AN L(P) INEQUALITY FOR A POLYNOMIAL AND ITS DERIVATIVE

被引:3
作者
GARDNER, RB [1 ]
GOVIL, NK [1 ]
机构
[1] AUBURN UNIV,DEPT MATH,AUBURN,AL 36849
关键词
D O I
10.1006/jmaa.1995.1325
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P(z) = an Πnν=1 (z - zν), an ≠ 0 be a polynomial of degree n. It is known that if |zν| ≥ Kν ≥ 1, 1 ≤ ν ≤ n, then for p ≥ 1,[formula] where [formula] and [formula] This inequality is best possible in the case Kν = 1, 1 ≤ ν ≤ n, and equality holds for the polynomial (z + 1)n. In this paper, we extend the above inequality to values of p ∈ [0, 1) and thus conclude that this inequality in fact holds for all p ≥ 0. © 1995 Academic Press, Inc.
引用
收藏
页码:720 / 726
页数:7
相关论文
共 12 条
[1]  
Arestov V. V, 1981, IZV AKAD NAUK SSSR M, V45, P3
[2]  
Arestov V. V., 1982, MATH USSR IZV, V18, P1
[3]  
Bernstein S., 1926, LECONS PROPRIETES EX
[4]  
De Bruijn N.G., 1947, NEDERL AKAD WETENSCH, V50, P1265
[5]  
De Bruyn N.G., 1947, NEDERL AKAD WATENSH, V50, P1265
[6]   INEQUALITIES CONCERNING THE L(P) NORM OF A POLYNOMIAL AND ITS DERIVATIVE [J].
GARDNER, RB ;
GOVIL, NK .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 179 (01) :208-213
[7]   ON BERNSTEIN INEQUALITY [J].
GOVIL, NK ;
LABELLE, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1987, 126 (02) :494-500
[8]  
Laguerre E., OEUVRES, V1
[9]  
Laguerre E., 1878, NOUVELLES ANN MATH, V17
[10]  
Lax P. D., 1944, B AM MATH SOC, V50, P509, DOI DOI 10.1090/S0002-9904-1944-08177-9