Estimation in Models with Commutative Orthogonal Block Structure

被引:7
作者
Carvalho, Francisco P. [1 ]
Mexia, Joao T. [2 ]
Oliveira, Manuela M. [3 ,4 ]
机构
[1] Polytech Inst Tomar, Management Sch, Dept Math, Estr Serra Quinta Contador, P-2300313 Tomar, Portugal
[2] Univ Nova Lisboa, Sci & Technol Fac, P-2829516 Caparica, Portugal
[3] Univ Evora, Dept Math, P-7002 Evora, Portugal
[4] Colegio Luis Antonio Verney, CIMA Ctr Res Math & Its Applicat, P-7002 Evora, Portugal
关键词
Commutative orthogonal block structure; Mixed linear models; Commutative Jordan algebras; Variance components;
D O I
10.1080/15598608.2009.10411942
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A model with variance-covariance matrix V = Sigma(v)(i=1)sigma(2)(i) P-i, where P-1,...,P-v are known pairwise orthogonal orthogonal projection matrices, will have Orthogonal Block Structure with variance components sigma(2)(1),...,sigma(2)(v). Moreover, if matrices P-1,...,P-v commute with the orthogonal projection matrix T on the space spanned by the mean vector, the model will have Commutative Orthogonal Block Structure (COBS). In this paper we will use Commutative Jordan Algebras to study the algebraic properties of these models as well as optimal estimators. We show that once normality is assumed, sufficient complete statistics are obtained and estimators are Uniformly Minimum Variance Unbiased Estimators.
引用
收藏
页码:523 / 533
页数:11
相关论文
共 17 条
[1]  
Calinski, 2000, BLOCK DESIGNS RANDOM, V150
[2]  
Calinski T., 2003, BLOCK DESIGNS RANDOM, VII
[3]  
Jordan P., 1934, ANN MATH
[4]  
Lehman E. L., 1986, TESTING STAT HYPOTHE
[5]  
Mexia J.T., 1989, 2 FAC CIENC TECN
[6]  
Mexia J. T., 1995, INTRO INFERENCIA EST
[7]  
Mexia J. T., 1990, COMP STAT DATA ANAL, V10
[8]  
Schott J.R., 1997, MATRIX ANAL STAT
[9]   LINEAR SPACES AND UNBIASED ESTIMATION [J].
SEELY, J .
ANNALS OF MATHEMATICAL STATISTICS, 1970, 41 (05) :1725-&
[10]   LINEAR SPACES AND MINIMUM VARIANCE UNBIASED ESTIMATION [J].
SEELY, J ;
ZYSKIND, G .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (02) :691-&