(1+1)-DIMENSIONAL HAMILTONIAN-SYSTEMS AS SYMMETRY CONSTRAINTS OF THE KADOMTSEV-PETVIASHVILI EQUATION

被引:25
作者
XU, B
LI, YS
机构
[1] Dept. of Math., Univ. of Sci. and Technol. of China, Anhui
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 1992年 / 25卷 / 10期
关键词
D O I
10.1088/0305-4470/25/10/023
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper we consider linear problems associated with the Kadomtsev-Petviashvili equation. We prove that the linear problems are (1 + 1)-dimensional Hamiltonian systems under the symmetry constraints. Moreover, we find that the Hamiltonian flows of the linear problems are commutative.
引用
收藏
页码:2957 / 2968
页数:12
相关论文
共 23 条
[1]  
BING X, 1989, THEORY BURCHALLCHAUD
[2]  
BING X, UNPUB INVERSE PROBLE
[3]  
Cao C W, 1989, SCI SINICA, V7, P701
[4]  
CAO CW, 1990, RES REPORTS PHYSICS, V68
[5]   THE CONSTRAINT OF THE KADOMTSEV-PETVIASHVILI EQUATION AND ITS SPECIAL SOLUTIONS [J].
CHENG, Y ;
LI, YS .
PHYSICS LETTERS A, 1991, 157 (01) :22-26
[6]   CONSTRAINTS OF THE 2+1 DIMENSIONAL INTEGRABLE SOLITON SYSTEMS [J].
CHENG, Y ;
LI, YS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (02) :419-431
[7]  
Date E., 1983, NONLINEAR INTEGRABLE
[8]  
FOKAS AS, 1987, STUD APPL MATH, V77, P253
[9]   SOLITONS AND INFINITE DIMENSIONAL LIE-ALGEBRAS [J].
JIMBO, M ;
MIWA, T .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 1983, 19 (03) :943-1001
[10]   (1+1)-DIMENSIONAL INTEGRABLE SYSTEMS AS SYMMETRY CONSTRAINTS OF (2+1)-DIMENSIONAL SYSTEMS [J].
KONOPELCHENKO, B ;
SIDORENKO, J ;
STRAMPP, W .
PHYSICS LETTERS A, 1991, 157 (01) :17-21