THE MAP AND BLEND SCATTERED DATA INTERPOLANT ON A SPHERE

被引:6
作者
FOLEY, TA
机构
[1] Computer Science Department Arizona State University, Tempe
基金
美国国家科学基金会;
关键词
D O I
10.1016/0898-1221(92)90171-D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The map and blend technique constructs a function defined over the sphere that interpolates to a discrete sample of measurements at arbitrary locations on the sphere. This technique consists of two different mappings of the sphere to planar domains, solving two corresponding scattered data interpolation problems on the planar domains, and then the interpolant on the sphere is formed by blending these two planar interpolants. If the user has software for solving the scattered data interpolation problem on a planar domain, only a small programming effort is needed to implement the map and blend interpolant on the sphere. Although any interpolant to scattered data on a planar domain can be used in our general technique, we use the multiquadric radial basis method.
引用
收藏
页码:49 / 60
页数:12
相关论文
共 24 条
[1]  
BARNHILL RE, 1987, GEOMETRIC MODELING, P281
[2]  
BARNHILL RE, 1991, GEOMETRIC MODELING M, P1
[3]   THE PARAMETER R2 IN MULTIQUADRIC INTERPOLATION [J].
CARLSON, RE ;
FOLEY, TA .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1991, 21 (09) :29-42
[4]  
Farin G., 2002, MORGAN KAUFMANN SERI, Vfifth
[5]   VISUALIZING FUNCTIONS OVER A SPHERE [J].
FOLEY, TA ;
LANE, DA ;
NIELSON, GM ;
RAMARAJ, R .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 1990, 10 (01) :32-40
[6]   INTERPOLATION AND APPROXIMATION OF 3-D AND 4-D SCATTERED DATA [J].
FOLEY, TA .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1987, 13 (08) :711-740
[7]  
FOLEY TA, 1990, ALGORITHSM APPROXI 2
[8]  
FOLEY TA, 1990, COMPUTER AIDED GEOME, P303
[9]  
FOLEY TA, 1990, VISUALIZATION COMPUT, V1, P2
[10]   SCATTERED DATA INTERPOLATION - TESTS OF SOME METHODS [J].
FRANKE, R .
MATHEMATICS OF COMPUTATION, 1982, 38 (157) :181-200