THE UNRESTRICTED VARIANT OF WARING'S PROBLEM IN FUNCTION FIELDS

被引:8
作者
Liu, Yu-Ru [1 ]
Wooley, Trevor D. [2 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON N2L 3G1, Canada
[2] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
基金
加拿大自然科学与工程研究理事会;
关键词
Waring's problem; function fields;
D O I
10.7169/facm/1229619654
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let J(q)(k)[t] denote the additive closure of the set of kth powers in the polynomial ring IF q[t], defined over the finite field Fq having q elements. We show that when s >= k + 1 and q >= k(2k+2) then every polynomial in J(q)(k)[t] is the sum of at most s kth powers of polynomials from F-q[t]. When k is large and s >=(4/3 + o(1)k log k, the same conclusion holds without restriction on q. Refinements are offered that depend on the characteristic of F-q.
引用
收藏
页码:285 / 291
页数:7
相关论文
共 50 条