ON NON-AUTONOMOUS KDV-FLOWS

被引:17
作者
ABELLANAS, L
GALINDO, A
机构
关键词
D O I
10.1016/0375-9601(85)90840-0
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:123 / 125
页数:3
相关论文
共 21 条
[1]   A HARRY DYM CLASS OF BIHAMILTONIAN EVOLUTION-EQUATIONS [J].
ABELLANAS, L ;
GALINDO, A .
PHYSICS LETTERS A, 1985, 107 (04) :159-160
[2]   EVOLUTION-EQUATIONS WITH HIGH-ORDER CONSERVATION-LAWS [J].
ABELLANAS, L ;
GALINDO, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (03) :504-509
[3]  
CALOGERO F, 1978, LETT NUOVO CIMENTO, V23, P4
[4]  
CALOGERO F, 1980, LECTURE NOTES PHYSIC, V120
[5]   BACKLUND-TRANSFORMATIONS APPLIED TO THE CYLINDRICAL KORTEWEG-DEVRIES EQUATION [J].
FREEMAN, NC ;
HORROCKS, G ;
WILKINSON, P .
PHYSICS LETTERS A, 1981, 81 (06) :305-309
[6]   EXACT SOLUTIONS TO THE EQUATION DESCRIBING CYLINDRICAL SOLITONS [J].
HIROTA, R .
PHYSICS LETTERS A, 1979, 71 (5-6) :393-394
[7]   TRAPPED-PARTICLES AND HARMONIC-GENERATION [J].
HOBBS, WE ;
DEGROOT, JS .
PHYSICS OF FLUIDS, 1977, 20 (07) :1109-1112
[8]  
JOHNSON RR, 1974, LECTURES APPLIED MAT, V15, P197
[9]   KORTEWEG-DEVRIES SOLITON IN A SLOWLY VARYING MEDIUM [J].
KO, K ;
KUEHL, HH .
PHYSICAL REVIEW LETTERS, 1978, 40 (04) :233-236
[10]   PROLONGATION ANALYSIS OF THE CYLINDRICAL KORTEWEG-DEVRIES EQUATION [J].
LEO, M ;
LEO, RA ;
SOLIANI, G ;
MARTINA, L .
PHYSICAL REVIEW D, 1982, 26 (04) :809-818