Differential behavior of the antioxidant system in response to salinity induced oxidative stress in salt-tolerant and salt-sensitive cultivars of Brassica juncea L

被引:31
|
作者
Kumar, Mukesh [1 ,3 ]
Kumar, Rakesh [2 ]
Jain, Veena [3 ]
Jain, Sunita [3 ]
机构
[1] Ambala Coll Engn & Appl Res, Dept Biotechnol Engn, Ambala 133101, Haryana, India
[2] Chaudhary Charan Singh Haryana Agr Univ, Dept Microbiol, Hisar 125004, Haryana, India
[3] Chaudhary Charan Singh Haryana Agr Univ, Dept Chem & Biochem, Hisar 125004, Haryana, India
关键词
Salinity; Antioxidant; Hydrogen peroxide; Proline; Catalase; Superoxide dismutase; Ascorbate peroxidase; Dehydroascorbate reductase; Glutathione reductase; Brassica;
D O I
10.1016/j.bcab.2017.11.003
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
In the present study, the ability of salt tolerant (CS-52) and salt sensitive (RH-8113) cultivars of Brassica juncea L. was investigated for their differential antioxidant defense mechanism to counter the salinity induced oxidative stress. The seedlings were treated with varying levels of NaCl (0, 50, 100 and 150 mM) and changes in content of malondialdehyde (MDA), hydrogen peroxide (H2O2), ascorbic acid, glutathione and proline were examined. Further, salinity induced variations in activity levels of leaf superoxide dismutase (SOD), catalase (CAT), peroxidase (POX), ascorbate peroxidase (APOX), dehydroascorbate reductase (DHAR) and glutathione reductase (GR) in both the cultivars were also investigated. Production of H2O2 and MDA was much higher in salt sensitive cultivar RH-8113. Glutathione, ascorbic acid and proline content enhanced in both the cultivars with more pronounced effect on tolerant cultivar CS-52. The salt tolerant cultivar CS-52 exhibited significant increase in the activities of SOD, DHAR and GR in response to the increasing salinity, though no increase in the activity of CAT, POX and APOX was observed. However, basal level of POX and APOX was found to be much higher in the salt tolerant cultivar CS-52. In comparison, SOD activity declined and that of CAT, DHAR and GR remained unaltered in salt sensitive cultivar RH-8113, though there was significant increase in the activities of POX and APOX. These results suggest that cultivar CS-52 exhibit better protective mechanism against salt induced oxidative damage by maintaining higher levels of antioxidant enzymes and of some antioxidants in comparison to salt sensitive cultivar RH-8113.
引用
收藏
页码:12 / 19
页数:8
相关论文
共 50 条
  • [41] Effects of salt stress on root plasma membrane characteristics of salt-tolerant and salt-sensitive buffalograss clones
    Lin, H
    Wu, L
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 1996, 36 (03) : 239 - +
  • [42] Ion distribution in leaves of salt-tolerant and salt-sensitive lines of spring wheat under salt stress
    Ashraf, M
    OLeary, JW
    ACTA BOTANICA NEERLANDICA, 1997, 46 (02): : 207 - 217
  • [43] THE EFFECTS OF NACL ON ANTIOXIDANT ENZYME-ACTIVITIES IN CALLUS-TISSUE OF SALT-TOLERANT AND SALT-SENSITIVE COTTON CULTIVARS (GOSSYPIUM-HIRSUTUM L)
    GOSSETT, DR
    MILLHOLLON, EP
    LUCAS, MC
    BANKS, SW
    MARNEY, MM
    PLANT CELL REPORTS, 1994, 13 (09) : 498 - 503
  • [44] The Proteome Response of Salt-Sensitive Rapeseed (Brassica napus L.) Genotype to Salt Stress
    Dolatabadi, Nima
    Toorchi, Mahmoud
    Valizadeh, Mostafa
    Bandehagh, Ali
    NOTULAE BOTANICAE HORTI AGROBOTANICI CLUJ-NAPOCA, 2019, 47 (01) : 17 - 23
  • [45] Comparative Transcriptome Analysis of Salt-Tolerant and -Sensitive Soybean Cultivars under Salt Stress
    Cheng, Ye
    Cheng, Xiangqiang
    Wei, Kai
    Wang, Yan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (18)
  • [46] No support for purported effects of salt-tolerant stream invertebrates on the salinity responses of salt-sensitive stream invertebrates
    Chessman, Bruce C.
    MARINE AND FRESHWATER RESEARCH, 2021, 72 (03) : 439 - 442
  • [47] Differential Regulation of NAPDH Oxidases in Salt-Tolerant Eutrema salsugineum and Salt-Sensitive Arabidopsis thaliana
    Pilarska, Maria
    Bartels, Dorothea
    Niewiadomska, Ewa
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (19)
  • [48] Transcriptome Analysis Reveals Complex Defensive Mechanisms in Salt-Tolerant and Salt-Sensitive Shrub Willow Genotypes under Salinity Stress
    Sui, Dezong
    Wang, Baosong
    INTERNATIONAL JOURNAL OF GENOMICS, 2020, 2020
  • [49] Salt stress modifies apoplastic barriers in olive (Olea europaea L.): a comparison between a salt-tolerant and a salt-sensitive cultivar
    Rossi, Lorenzo
    Francini, Alessandra
    Minnocci, Antonio
    Sebastiani, Luca
    SCIENTIA HORTICULTURAE, 2015, 192 : 38 - 46
  • [50] Hormonal dynamics during salt stress responses of salt-sensitive Arabidopsis thaliana and salt-tolerant Thellungiella salsuginea
    Prerostova, Sylva
    Dobrev, Petre I.
    Gaudinova, Alena
    Hosek, Petr
    Soudek, Petr
    Knirsch, Vojtech
    Vankova, Radomira
    PLANT SCIENCE, 2017, 264 : 188 - 198