Multi-feature Fusion Tracking Based on A New Particle Filter

被引:9
作者
Cao, Jie [1 ,2 ,3 ,4 ]
Li, Wei [1 ,3 ,4 ,5 ]
Wu, Di [2 ,3 ,4 ]
机构
[1] Lanzhou Univ Technol, Coll Comp & Commun, Lanzhou, Gansu, Peoples R China
[2] Lanzhou Univ Technol, Coll Elect & Informat Engn, Lanzhou, Gansu, Peoples R China
[3] Key Lab Gansu Adv Control Ind Proc, Lanzhou, Gansu, Peoples R China
[4] Mfg Engn Technol Res Ctr Gansu, Lanzhou, Gansu, Peoples R China
[5] PLA Troops 91666, Zhoushan 316000, Zhejiang, Peoples R China
关键词
Particle Filter; Quadrature Kalman Filter; Object Tracking; Multi-feature Fusion; D-S Evidence Theory;
D O I
10.4304/jcp.7.12.2939-2947
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
A new kind of particle filter is proposed for the state estimation of nonlinear system. The proposed algorithm based on Quadrature Kalman Filter by using integral pruning factor, which optimizes and reorganizes the integration point. New algorithm overcomes the particle degeneration phenomenon well by using Pruning Quadrature Kalman Filter to produce optimized proposal distribution function. In the improving particle filter framework, using color and motion edge character as observation model. Fusing feature weights through the D-S evidence theory, and effectively avoid the questions of bad robust produced by the single color feature in the illumination of mutation, posture change and similar feature occlusion. Experiment results indicate that the proposed method is more robust to track object and has good performance in complex scene.
引用
收藏
页码:2939 / 2947
页数:9
相关论文
共 15 条
  • [1] Discrete-time nonlinear filtering algorithms using Gauss-Hermite quadrature
    Arasaratnam, Ienkaran
    Haykin, Simon
    Elliott, Robert J.
    [J]. PROCEEDINGS OF THE IEEE, 2007, 95 (05) : 953 - 977
  • [2] A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
    Arulampalam, MS
    Maskell, S
    Gordon, N
    Clapp, T
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2002, 50 (02) : 174 - 188
  • [3] Lucas-Kanade 20 years on: A unifying framework
    Baker, S
    Matthews, I
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 56 (03) : 221 - 255
  • [4] Sequential Monte Carlo tracking by fusing multiple cues in video sequences
    Brasnett, Paul
    Mihaylova, Lyudmila
    Bull, David
    Canagarajah, Nishan
    [J]. IMAGE AND VISION COMPUTING, 2007, 25 (08) : 1217 - 1227
  • [5] On sequential Monte Carlo sampling methods for Bayesian filtering
    Doucet, A
    Godsill, S
    Andrieu, C
    [J]. STATISTICS AND COMPUTING, 2000, 10 (03) : 197 - 208
  • [6] Du W, 2008, LECT NOTES COMPUT SC, V5303, P225, DOI 10.1007/978-3-540-88688-4_17
  • [7] Gu Xin, 2011, Acta Automatica Sinica, V37, P550, DOI 10.3724/SP.J.1004.2011.00550
  • [8] Unscented filtering and nonlinear estimation
    Julier, SJ
    Uhlmann, JK
    [J]. PROCEEDINGS OF THE IEEE, 2004, 92 (03) : 401 - 422
  • [9] Unsupervised video object segmentation and tracking based on new edge features
    Kim, BG
    Park, DJ
    [J]. PATTERN RECOGNITION LETTERS, 2004, 25 (15) : 1731 - 1742
  • [10] Optical flow and active contour for moving object segmentation and detection in monocular robot
    Liu, Polley R.
    Meng, Max Q. -H.
    Liu, Peter X.
    Tong, Fanny F. L.
    Wang, Xiaona
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), VOLS 1-10, 2006, : 4075 - +