SYMMETRY LIE-ALGEBRAS OF NTH ORDER ORDINARY DIFFERENTIAL-EQUATIONS

被引:118
作者
MAHOMED, FM [1 ]
LEACH, PGL [1 ]
机构
[1] UNIV WITWATERSRAND,DEPT COMPUTAT & APPL MATH,JOHANNESBURG 2050,SOUTH AFRICA
关键词
Abelian Algebras - Lie Algebras - Symmetry Lie Algebras;
D O I
10.1016/0022-247X(90)90244-A
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that an nth (n ≥ 3) order linear ordinary differential equation has exactly one of n + 1, n + 2, or n + 4 (the maximum) point symmetries. The Lie algebras corresponding to the respective numbers of point symmetries are obtained. Then it is shown that a necessary and sufficient conditon for an nth (n ≥ 3) order equation to be linearizable via a point transformation is that it must admit the n dimensional Abelian algebra nA1 = A1 ⊕ A1 ⊕ ... ⊕ A1. We discuss in detail the symmetry realizations of (n - 1)A1 ⊕s A1. Finally, we prove that an nth (n ≥ 3) order equation q(n) = H(t, q, ..., qn - 1) cannot admit exactly an n + 3 dimensional algebra of point symmetries which is a subalgebra of nA1 ⊕, gl(2,R). © 1990.
引用
收藏
页码:80 / 107
页数:28
相关论文
共 21 条
[1]   SL(3,R) AS THE GROUP OF SYMMETRY TRANSFORMATIONS FOR ALL ONE-DIMENSIONAL LINEAR-SYSTEMS [J].
AGUIRRE, M ;
KRAUSE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1988, 29 (01) :9-15
[2]   SYMMETRIES OF DIFFERENTIAL-EQUATIONS .4. [J].
GONZALEZGASCON, F ;
GONZALEZLOPEZ, A .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (08) :2006-2021
[3]  
KRAUSE J, 1988, CR ACAD SCI I-MATH, V307, P905
[4]  
KRAUSE J, SYMMETRY LIE ALGEBRA
[5]   WHEN NON-LINEAR DIFFERENTIAL-EQUATIONS ARE EQUIVALENT TO LINEAR-DIFFERENTIAL EQUATIONS [J].
KUMEI, S ;
BLUMAN, GW .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (05) :1157-1173
[6]  
Laguerre E., 1879, CR HEBD ACAD SCI, V88, P116
[7]  
LEACH PGL, 1988, J MATH PHYS, V20, P1807
[9]  
Lie S., 1893, VORLESUNGEN KONTNUIE
[10]  
Lie S., 1967, DIFFERENTIALGLEICHUN