Subdivision Algorithms for Ruled Surfaces

被引:0
作者
Odehnal, Boris [1 ]
机构
[1] Vienna Univ Technol, Inst Discrete Math & Geometry, Wiedner Hauptstr 8-10-14, Vienna, Austria
来源
JOURNAL FOR GEOMETRY AND GRAPHICS | 2008年 / 12卷 / 01期
关键词
Subdivision; ruled surface; striction curve; geodesic subdivision; Euclidean motion; Sannia frame;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recent research has produced results on subdivision in arbitrary manifolds. These results can be applied to the manifold of lines and thus we can create subdivision schemes especially for ruled surfaces. We present different methods for refining discrete models of ruled surfaces: An algorithm combining subdivision and projection to the manifold of lines in Euclidean three-space. A further algorithm combines subdivision for the striction curve with geodesic subdivision in the Euclidean unit sphere. The third method is based on the Denavit-Hartenberg-Method for serial robots. We refine the sequence of motions of the Sannia frame by means of geodesic subdivision in the group of Euclidean motions.
引用
收藏
页码:35 / 52
页数:18
相关论文
共 31 条
[1]  
Bottema O., 1990, THEORETICAL KINEMATI
[2]  
Chaikin G.M., 1974, COMPUT VISION GRAPH, V3, P346, DOI DOI 10.1016/0146-664X(74)90028-8
[3]   Approximation by ruled surfaces [J].
Chen, HY ;
Pottmann, H .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1999, 102 (01) :143-156
[4]  
Derose TD, 1996, WAVELETS COMPUTER GR
[5]   AN ALGEBRAIC APPROACH TO CURVES AND SURFACES ON THE SPHERE AND ON OTHER QUADRICS [J].
DIETZ, R ;
HOSCHEK, J ;
JUTTLER, B .
COMPUTER AIDED GEOMETRIC DESIGN, 1993, 10 (3-4) :211-229
[6]  
Dyn N., 1987, Computer-Aided Geometric Design, V4, P257, DOI 10.1016/0167-8396(87)90001-X
[7]   Rational interpolation on a hypersphere [J].
Gfrerrer, A .
COMPUTER AIDED GEOMETRIC DESIGN, 1999, 16 (01) :21-37
[8]  
Gfrerrer A., 2000, GRAZER MATH BER, V340, P1
[9]   An interpolating 4-point C2 ternary stationary subdivision scheme [J].
Hassan, MF ;
Ivrissimitzis, IP ;
Dodgson, NA ;
Sabin, MA .
COMPUTER AIDED GEOMETRIC DESIGN, 2002, 19 (01) :1-18
[10]  
Hoschek J., 1971, LINIENGEOMETRIE