Exergy Evaluation of Desalination Processes

被引:40
作者
Gude, Veera Gnaneswar [1 ]
机构
[1] Mississippi State Univ, Dept Civil & Environm Engn, Mississippi State, MS 39762 USA
关键词
desalination; energy; exergy; entropy; environment; sustainability;
D O I
10.3390/chemengineering2020028
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Desalination of sea or brackish water sources to provide clean water supplies has now become a feasible option around the world. Escalating global populations have caused the surge of desalination applications. Desalination processes are energy intensive which results in a significant energy portfolio and associated environmental pollution for many communities. Both electrical and heat energy required for desalination processes have been reduced significantly over the recent years. However, the energy demands are still high and are expected to grow sharply with increasing population. Desalination technologies utilize various forms of energy to produce freshwater. While the process efficiency can be reported by the first law of thermodynamic analysis, this is not a true measure of the process performance as it does not account for all losses of energy. Accordingly, the second law of thermodynamics has been more useful to evaluate the performance of desalination systems. The second law of thermodynamics (exergy analysis) accounts for the available forms of energy in the process streams and energy sources with a reference environment and identifies the major losses of exergy destruction. This aids in developing efficient desalination processes by eliminating the hidden losses. This paper elaborates on exergy analysis of desalination processes to evaluate the thermodynamic efficiency of major components and process streams and identifies suitable operating conditions to minimize exergy destruction. Well-established MSF, MED, MED-TVC, RO, solar distillation, and membrane distillation technologies were discussed with case studies to illustrate the exergy performances.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 97 条
[1]   Analysis of an innovative water desalination system using low-grade solar heat [J].
Al-Kharabsheh, S ;
Goswami, DY .
DESALINATION, 2003, 156 (1-3) :323-332
[2]   Potential of membrane distillation in seawater desalination: Thermal efficiency, sensitivity study and cost estimation [J].
Al-Obaidani, Sulaiman ;
Curcio, Efrem ;
Macedonio, Francesca ;
Di Profio, Gianluca ;
Ai-Hinai, Hilal ;
Drioli, Enrico .
JOURNAL OF MEMBRANE SCIENCE, 2008, 323 (01) :85-98
[3]   Exergy efficiency enhancement of MSF desalination by heat recovery from hot distillate water stages [J].
Al-Weshahi, Mohammed A. ;
Anderson, Alexander ;
Tian, Guohong .
APPLIED THERMAL ENGINEERING, 2013, 53 (02) :226-233
[4]   Application of absorption heat pumps to multi-effect distillation:: a case study of solar desalination [J].
Alarcon-Padilla, Diego-Cesar ;
Garcia-Rodriguez, Lourdes .
DESALINATION, 2007, 212 (1-3) :294-302
[5]   Thermal analysis of ME-TVC plus MEE desalination systems [J].
Alasfour, FN ;
Darwish, MA ;
Bin Amer, AO .
DESALINATION, 2005, 174 (01) :39-61
[6]   Second-law analysis of a reverse osmosis plant in Jordan [J].
Aljundi, Isam H. .
DESALINATION, 2009, 239 (1-3) :207-215
[7]   Thermovapor compression desalters: energy and availability - Analysis of single- and multi-effect systems [J].
AlNajem, NM ;
Darwish, MA ;
Youssef, FA .
DESALINATION, 1997, 110 (03) :223-238
[8]   Exergy analysis of major recirculating multi-stage flash desalting plants in Saudi Arabia [J].
AlSulaiman, FA ;
Ismail, B .
DESALINATION, 1995, 103 (03) :265-270
[9]   A novel configuration of reverse osmosis, humidification-dehumidification and flat plate collector: Modeling and exergy analysis [J].
Ameri, Mohammad ;
Eshaghi, Mahyar Seyd .
APPLIED THERMAL ENGINEERING, 2016, 103 :855-873
[10]   Exergy analysis of solar desalination still combined with heat storage system using phase change material (PCM) [J].
Asbik, Mohamed ;
Ansari, Omar ;
Bah, Abdellah ;
Zari, Nadia ;
Mimet, Abdelaziz ;
El-Ghetany, Hamdy .
DESALINATION, 2016, 381 :26-37