TILTING MODULES AND TILTING TORSION

被引:121
作者
COLPI, R [1 ]
TRLIFAJ, J [1 ]
机构
[1] CHARLES UNIV,FAC MATH & PHYS,DEPT ALGEBRA,CR-18600 PRAGUE 8,CZECH REPUBLIC
关键词
D O I
10.1006/jabr.1995.1368
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize basic results about classical tilting modules and partial tilting modules to the infinite dimensional case, over an arbitrary ring R. The methods employed combine classical techniques of representation theory of finite dimensional algebras with new techniques of the theory of *-modules. Using a generalization of the Bongartz lemma, we characterize tilting torsion theories in Mod-R, i.e., torsion theories induced by (infinitely generated) tilting modules. We investigate lattices [Gen(P), P-perpendicular to] of torsion classes induced by partial tilting modules P. Applying our results to tilting torsion classes, we prove a version of the Brenner-Butler theorem, and a generalization of the Assem-Smalo theorem to the case when R is artinian. (C) 1995 Academic Press, Inc.
引用
收藏
页码:614 / 634
页数:21
相关论文
共 35 条
[1]  
Anderson F. W., 1992, GRAD TEXTS MATH, V13
[2]   ON TORSION THEORIES INDUCED BY TILTING MODULES [J].
ASENSIO, PAG ;
ASENSIO, FG .
COMMUNICATIONS IN ALGEBRA, 1992, 20 (07) :2015-2027
[3]   TORSION THEORIES INDUCED BY TILTING MODULES [J].
ASSEM, I .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1984, 36 (05) :899-913
[4]  
ASSEM I, 1990, TOPICS ALGEBRA, V26, P127
[5]  
ASSEM I, 1993, 121 U SHERBR RAPP
[6]   REPRESENTATION THEORY OF ARTIN ALGEBRAS -3 ALMOST SPLIT SEQUENCES [J].
AUSLANDER, M ;
REITEN, I .
COMMUNICATIONS IN ALGEBRA, 1975, 3 (03) :239-294
[7]   ALMOST SPLIT-SEQUENCES IN SUBCATEGORIES [J].
AUSLANDER, M ;
SMALO, SO .
JOURNAL OF ALGEBRA, 1981, 69 (02) :426-454
[8]  
AUSLANDER M, 1977, COMMUN ALGEBRA, V5, P442
[9]  
Bongartz K., 1981, LECT NOTES MATH, V903, P26
[10]  
Brenner S., 1980, REPRESENT THEOR, V832, P103