PREPARATION THEOREMS FOR MATRIX VALUED FUNCTIONS

被引:5
|
作者
DENCKER, N [1 ]
机构
[1] LUND UNIV,DEPT MATH,S-22100 LUND,SWEDEN
关键词
MALGRANGE PREPARATION THEOREM; MATRIX VALUED FUNCTIONS; NORMAL FORMS; ELEMENTARY DIVISORS;
D O I
10.5802/aif.1359
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We generalize the Malgrange preparation theorem to matrix valued functions F(t,x) is-an-element-of C(infinity)(R x R(n)) satisfying the condition that t --> detF(t,0) vanishes to finite order at t = 0. Then we can factor F(t, x) = C(t, x)P(t, x) near (0, 0), where C(t, x) is-an-element-of C(infinity) is inversible and P(t, x) is polynomial function of t depending C(infinity) on x. The preparation is (essentially) unique, up to functions vanishing to infinite order at x = 0, if we impose some additional conditions on P(t, x). We also have a generalization of the division theorem and analytic versions generalizing the Weierstrass preparation and division theorems.
引用
收藏
页码:865 / 892
页数:28
相关论文
共 50 条
  • [21] GENERALIZED PSEUDOINVERSES OF MATRIX VALUED FUNCTIONS
    RAKOWSKI, M
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 1991, 14 (04) : 564 - 585
  • [22] Basis problems for matrix valued functions
    Hasanov, M.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 342 (02) : 766 - 772
  • [23] On matrix-valued Herglotz functions
    Gesztesy, F
    Tsekanovskii, E
    MATHEMATISCHE NACHRICHTEN, 2000, 218 : 61 - 138
  • [24] Rudin's extension theorems and exponential convexity for matrix- and function-valued positive semidefinite functions
    Porcu, Emilio
    Emery, Xavier
    Ferreira, Vinicius
    Zubelli, Jorge
    COMPUTATIONAL & APPLIED MATHEMATICS, 2025, 44 (01):
  • [25] Random fixed point theorems for set-valued functions
    Wu, Jianrong
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2000, 32 (02): : 9 - 11
  • [26] Mapping theorems for Sobolev spaces of vector-valued functions
    Arendt, Wolfgang
    Kreuter, Marcel
    STUDIA MATHEMATICA, 2018, 240 (03) : 275 - 299
  • [27] SOME INTERSECTION-THEOREMS ON 2-VALUED FUNCTIONS
    FAUDREE, RJ
    SCHELP, RH
    SOS, VT
    COMBINATORICA, 1986, 6 (04) : 327 - 333
  • [28] On some dilation theorems for positive definite operator valued functions
    Pater, Flavius
    Binzar, Tudor
    STUDIA MATHEMATICA, 2015, 228 (02) : 109 - 122
  • [29] THEOREMS ON IMBEDDING IN ANISOTROPIC SPACES OF VECTOR-VALUED FUNCTIONS
    YAKUBOV, SY
    SHAKHMUROV, VB
    MATHEMATICAL NOTES, 1977, 22 (1-2) : 657 - 659
  • [30] ENCLOSURE THEOREMS FOR VECTOR-VALUED FUNCTIONS .2.
    LIZORKIN, PI
    SHAKHMUROV, VB
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1989, (02): : 47 - 54