PRODUCTS OF IDEMPOTENT ENDOMORPHISMS OF AN INDEPENDENCE ALGEBRA OF FINITE RANK

被引:53
作者
FOUNTAIN, J [1 ]
LEWIN, A [1 ]
机构
[1] UNIV YORK,DEPT MATH,YORK YO1 5DD,N YORKSHIRE,ENGLAND
关键词
D O I
10.1017/S0013091500005769
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Products of idempotents are investigated in the endomorphism monoid of an algebra belonging to a class of algebras which includes finite sets and finite dimensional vector spaces as special cases. It is shown that every endomorphism which is not an automorphism is a product of idempotent endomorphisms. This provides a common generalisation of earlier results of Howie and Erdos for the cases when the algebra is a set or vector space respectively.
引用
收藏
页码:493 / 500
页数:8
相关论文
共 11 条
[1]  
DAWLINGS RJH, 1980, THESIS ST ANDREWS
[2]  
DAWLINGS RJH, 1980, SEMIGROUPS, P121
[3]   ON PRODUCTS OF IDEMPOTENT MATRICES [J].
ERDOS, JA .
GLASGOW MATHEMATICAL JOURNAL, 1967, 8 :118-&
[4]  
GOULD VAR, ENDOMORPHISM MONOIDS
[5]  
Gratzer G., 2008, UNIVERSAL ALGEBRA
[6]   REGULAR SEMIGROUPS [J].
HALL, TE .
JOURNAL OF ALGEBRA, 1973, 24 (01) :1-24
[7]  
Howie J. M., 1976, INTRO SEMIGROUP THEO
[8]  
HOWIE JM, 1966, J LONDON MATH SOC, V41, P707
[9]  
MCKENZIE RN, 1983, ALGEBRA LATTICES VAR, V1
[10]  
NARKIEWICZ W, 1961, FUND MATH, V50, P333