THE SPECTRAL THEORY OF GEOMETRICALLY PERIODIC HYPERBOLIC 3-MANIFOLDS

被引:0
|
作者
EPSTEIN, CL
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1 / 161
页数:161
相关论文
共 50 条
  • [1] SPECTRAL THEORY OF GEOMETRICALLY PERIODIC HYPERBOLIC 3-MANIFOLDS (MOSTLY IN ENGLISH-LANGUAGE)
    EPSTEIN, CL
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1985, 300 (13): : 431 - 435
  • [2] Geometrically tame hyperbolic 3-manifolds
    Canary, Richard D.
    Proceedings of Symposia in Pure Mathematics, 1993, 54 (02):
  • [3] Spectral Theory of the Frame Flow on Hyperbolic 3-Manifolds
    Guillarmou, Colin
    Kuester, Benjamin
    ANNALES HENRI POINCARE, 2021, 22 (11): : 3565 - 3617
  • [4] Spectral Theory of the Frame Flow on Hyperbolic 3-Manifolds
    Colin Guillarmou
    Benjamin Küster
    Annales Henri Poincaré, 2021, 22 : 3565 - 3617
  • [5] Spectral theory, Hausdorff dimension and the topology of hyperbolic 3-manifolds
    Richard D. Canary
    Yair N. Minsky
    Edward C. Taylor
    The Journal of Geometric Analysis, 1999, 9 (1): : 17 - 40
  • [6] COUNTING CUSPED HYPERBOLIC 3-MANIFOLDS THAT BOUND GEOMETRICALLY
    Kolpakov, Alexander
    Riolo, Stefano
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (01) : 229 - 247
  • [7] Spectral asymptotics on degenerating hyperbolic 3-manifolds
    Dodziuk, J
    Jorgenson, J
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 135 (643) : 1 - +
  • [8] Spectral bounds on closed hyperbolic 3-manifolds
    White, Nina
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2013, 87 : 837 - 852
  • [9] MANY CUSPED HYPERBOLIC 3-MANIFOLDS DO NOT BOUND GEOMETRICALLY
    Kolpakov, Alexander
    Reid, Alan W.
    Riolo, Stefano
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (05) : 2233 - 2243
  • [10] Quasirigidity of hyperbolic 3-manifolds and scattering theory
    Borthwick, D
    McRae, A
    Taylor, EC
    DUKE MATHEMATICAL JOURNAL, 1997, 89 (02) : 225 - 236