AN ALGORITHM FOR SOLVING DISCRETE-TIME WIENER - HOPF EQUATIONS BASED UPON EUCLIDS ALGORITHM

被引:29
作者
SUGIYAMA, Y
机构
[1] Setsunan Univ, Neyagawa, Jpn, Setsunan Univ, Neyagawa, Jpn
关键词
CODES; SYMBOLIC - Error Correction - SIGNAL PROCESSING - Digital Techniques;
D O I
10.1109/TIT.1986.1057178
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The discrete-time Wiener-Hopf equation is a system of linear inhomogeneous equations with a given Toeplitz matrix M, a given vector b, and an unknown vector lambda such that M lambda equals b. The algorithm is able to find a solution of the discrete-time Wiener-Hopf equation for any type of Toeplitz matrices except for the all-zero matrix. The algorithm gives a solution, if one exists, even when the Toeplitz matrix M is singular. It requires O (t**2 ) arithmetic operations for t unknowns, in the sense that the number of multiplications or divisions is directly proportional to t**2 . A faster algorithm is also presented based upon the half greatest common divisor algorithm; it requires O (t log**2 t) arithmetic operations.
引用
收藏
页码:394 / 409
页数:16
相关论文
共 22 条
[1]  
Aho A. V., 1974, DESIGN ANAL COMPUTER, V1st
[2]  
ARIMOTO S, 1982, J SOC INSTRUM CONTRO, V21, P625
[3]  
BERLEKAMP ER, 1968, ALGEBRAIC CODING THE
[4]  
Blahut R. E., 1983, THEORY PRACTICE ERRO
[5]  
BLAHUT RE, 1985, FAST ALGORITHMS DIGI
[6]  
Brent R. P., 1980, J ALGORITHMS, V1, P259
[7]   A GENERALIZATION OF THE LEVINSON ALGORITHM FOR HERMITIAN TOEPLITZ MATRICES WITH ANY RANK PROFILE [J].
DELSARTE, P ;
GENIN, YV ;
KAMP, YG .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1985, 33 (04) :964-971
[8]  
Durbin J., 1960, ECONOMETRICA, V28, P233, DOI 10.2307/1401322
[9]   FAST ALGORITHMS FOR RATIONAL HERMITE APPROXIMATION AND SOLUTION OF TOEPLITZ SYSTEMS [J].
GUSTAVSON, FG ;
YUN, DYY .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1979, 26 (09) :750-755
[10]   COMPLEXITY OF DECODING REED-SOLOMON CODES [J].
JUSTESEN, J .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (02) :237-238