2X AND C(X) ARE HOMEOMORPHIC TO HILBERT CUBE

被引:29
作者
CURTIS, DW [1 ]
SCHORI, RM [1 ]
机构
[1] LOUISIANA STATE UNIV,DEPT MATH,BATON ROUGE,LA 70803
关键词
D O I
10.1090/S0002-9904-1974-13579-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:927 / 931
页数:5
相关论文
共 9 条
[1]   PARTITIONING A SET [J].
BING, RH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1949, 55 (12) :1101-1110
[2]   PARTITIONING CONTINUOUS CURVES [J].
BING, RH .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 58 (05) :536-556
[3]  
Brown M, 1960, Proc. Amer. Math. Soc, V11, P478
[4]   Hyperspaces of a continuum [J].
Kelley, J. L. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1942, 52 (1-3) :22-36
[5]  
lawski Wojdis, 1939, Fund. Math., V32, P184
[6]   2I IS HOMEOMORPHIC TO HILBERT CUBE [J].
SCHORI, R ;
WEST, JE .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 78 (03) :402-&
[7]   INFINITE PRODUCTS WHICH ARE HILBERT CUBES [J].
WEST, JE .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1970, 150 (01) :1-&
[8]   SUBCONTINUA OF A DENDRON FORM A HILBERT CUBE FACTOR [J].
WEST, JE .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 36 (02) :603-608
[9]  
WOJDYSLAWSKI M, 1938, FUND MATH, V30, P247