INTERMEDIATE ASYMPTOTICS FOR CONVERGENT VISCOUS GRAVITY CURRENTS

被引:11
作者
ANGENENT, SB [1 ]
ARONSON, DG [1 ]
机构
[1] UNIV MINNESOTA,SCH MATH,MINNEAPOLIS,MN 55455
关键词
D O I
10.1063/1.868722
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Recent experiments by Diez et al. [Phys. Fluids A 4, 1148 (1992)] have shown that converging flow of a very viscous liquid over a rigid horizontal surface, near the time of convergence, approximates a certain self-similar solution to the nonlinear diffusion equation governing the flow. This Brief Communication presents a rigorous mathematical theory of the flow considered by Diez et al., which justifies their observations. © 1995 American Institute of Physics.
引用
收藏
页码:223 / 225
页数:3
相关论文
共 11 条
[1]  
ANGENENT S, 1990, J LOND MATH SOC, V42, P339
[2]  
ANGENENT SB, IN PRESS COMM PDE
[3]   CALCULATION OF ANOMALOUS EXPONENTS IN NONLINEAR DIFFUSION [J].
ARONSON, DG ;
VAZQUEZ, JL .
PHYSICAL REVIEW LETTERS, 1994, 72 (03) :348-351
[4]  
ARONSON DG, 1986, LECTURE NOTES MATH, V1224
[5]  
ARONSON DG, 1993, EUR J APPL MATH, V4, P65
[6]   SELF-SIMILAR SOLUTIONS OF THE SECOND KIND OF NONLINEAR DIFFUSION-TYPE EQUATIONS [J].
DIEZ, JA ;
GRATTON, J ;
MINOTTI, F .
QUARTERLY OF APPLIED MATHEMATICS, 1992, 50 (03) :401-414
[7]   SELF-SIMILAR SOLUTION OF THE 2ND KIND FOR A CONVERGENT VISCOUS GRAVITY CURRENT [J].
DIEZ, JA ;
GRATTON, R ;
GRATTON, J .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (06) :1148-1155
[8]   SELF-SIMILAR VISCOUS GRAVITY CURRENTS - PHASE-PLANE FORMALISM [J].
GRATTON, J ;
MINOTTI, F .
JOURNAL OF FLUID MECHANICS, 1990, 210 :155-182
[9]  
GRAVELEAU J, 1972, QUELQUES SOLUTIONS A
[10]  
Guderley K. G, 1942, LUFTFAHRTFORSCHUNG, V19, P302