ATTRACTION RADII IN BINARY HOPFIELD NETS ARE HARD TO COMPUTE

被引:18
作者
FLOREEN, P
ORPONEN, P
机构
关键词
D O I
10.1162/neco.1993.5.5.812
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We prove that it is an NP-hard problem to determine the attraction radius of a stable vector in a binary Hopfield memory network, and even that the attraction radius is hard to approximate. Under synchronous updating, the problems are already NP-hard for two-step attraction radii; direct (one-step) attraction radii can be computed in polynomial time.
引用
收藏
页码:812 / 821
页数:10
相关论文
共 11 条
[1]  
Floreen P., 1989, COMPLEX SYST, V3, P577
[2]  
Garey M. R., 1979, COMPUTERS INTRACTABI
[3]  
GODBEER GH, 1988, 20888 U TOR DEP COMP
[4]   DECREASING ENERGY FUNCTIONS AS A TOOL FOR STUDYING THRESHOLD NETWORKS [J].
GOLESCHACC, E ;
FOGELMANSOULIE, F ;
PELLEGRIN, D .
DISCRETE APPLIED MATHEMATICS, 1985, 12 (03) :261-277
[5]  
HALLDORSSON MM, 1993, JAIST ISRR930001F JA
[6]   NEURAL NETWORKS AND PHYSICAL SYSTEMS WITH EMERGENT COLLECTIVE COMPUTATIONAL ABILITIES [J].
HOPFIELD, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1982, 79 (08) :2554-2558
[7]  
KANN V, 1992, COMMUNICATION
[8]  
ORPONEN P, 1992, LECT NOTES COMPUT SC, V629, P50
[9]  
PANCONESI A, 1990, 22ND P ANN ACM S THE, P446
[10]  
PARBERRY I, 1990, FORMAL TECHNIQUES AR, P217