ON A CLASS OF QI-RINGS

被引:27
作者
JAIN, SK
LOPEZPERMOUTH, SR
SINGH, S
机构
[1] OHIO UNIV,DEPT MATH,ATHENS,OH 45701
[2] KUWAIT UNIV,DEPT MATH,KUWAIT,KUWAIT
关键词
D O I
10.1017/S0017089500008557
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:75 / 81
页数:7
相关论文
共 13 条
[1]  
BEACHY JA, 1975, PAC J MATH, V58, P1
[2]   RINGS OVER WHICH CERTAIN MODULES ARE INJECTIVE [J].
BOYLE, AK ;
GOODEARL, KR .
PACIFIC JOURNAL OF MATHEMATICS, 1975, 58 (01) :43-53
[3]   HEREDITARY QI-RINGS [J].
BOYLE, AK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 192 :115-120
[4]   INJECTIVES CONTAINING NO PROPER QUASI-INJECTIVE SUBMODULES [J].
BOYLE, AK .
COMMUNICATIONS IN ALGEBRA, 1976, 4 (08) :775-785
[5]   MODULES OVER DEDEKIND PRIME RINGS [J].
EISENBUD, D ;
ROBSON, JC .
JOURNAL OF ALGEBRA, 1970, 16 (01) :67-&
[6]   HEREDITARY RINGS AND BOYLES CONJECTURE [J].
FAITH, C .
ARCHIV DER MATHEMATIK, 1976, 27 (02) :113-119
[7]   WHEN ARE PROPER CYCLICS INJECTIVE [J].
FAITH, C .
PACIFIC JOURNAL OF MATHEMATICS, 1973, 45 (01) :97-112
[8]   COCRITICALLY NICE-RINGS AND BOYLES CONJECTURE [J].
GOLAN, JS ;
PAPP, Z .
COMMUNICATIONS IN ALGEBRA, 1980, 8 (18) :1775-1798
[9]  
GORDON R, 1970, MEM AM MATH SOC, V133
[10]   RINGS WHOSE CYCLICS ARE ESSENTIALLY EMBEDDABLE IN PROJECTIVE-MODULES [J].
JAIN, SK ;
LOPEZPERMOUTH, SR .
JOURNAL OF ALGEBRA, 1990, 128 (01) :257-269