Subject specific and population average models for binary longitudinal data: a tutorial

被引:0
作者
Szmaragd, Camille [1 ]
Clarke, Paul [1 ]
Steele, Fiona [1 ]
机构
[1] Univ Bristol, Bristol, Avon, England
来源
LONGITUDINAL AND LIFE COURSE STUDIES | 2013年 / 4卷 / 02期
关键词
autocorrelation; British Household Panel Survey; hierarchical models; logistic regression; marginal models; mixed effects models; multilevel models; random effects models; repeated measures;
D O I
暂无
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Using data from the British Household Panel Survey, we illustrate how longitudinal repeated measures of binary outcomes are analysed using population average and subject specific logistic regression models. We show how the autocorrelation found in longitudinal data is accounted for by both approaches, and why, in contrast to linear models for continuous outcomes, the parameters of population average and subject specific models for binary outcomes are different. To illustrate these points, we fit different models to our data set using both approaches, and compare and contrast the results obtained. Finally, we use our example to provide some guidance on how to choose between the two approaches.
引用
收藏
页码:147 / 165
页数:19
相关论文
共 50 条
[21]   A comparison of group sequential methods for binary longitudinal data [J].
Spiessens, B ;
Lesaffre, E ;
Verbeke, G .
STATISTICS IN MEDICINE, 2003, 22 (04) :501-515
[22]   The R Package bild for the Analysis of Binary Longitudinal Data [J].
Helena Goncalves, M. ;
Salome Cabral, M. ;
Azzalini, Adelchi .
JOURNAL OF STATISTICAL SOFTWARE, 2012, 46 (09) :1-17
[23]   A marginalized multilevel model for bivariate longitudinal binary data [J].
Inan, Gul ;
Ilk, Ozlem .
STATISTICAL PAPERS, 2019, 60 (03) :251-278
[24]   Prediction of Pregnancy: A Joint Model for Longitudinal and Binary Data [J].
Horrocks, Julie ;
van Den Heuvel, Marianne J. .
BAYESIAN ANALYSIS, 2009, 4 (03) :523-538
[25]   A marginalized multilevel model for bivariate longitudinal binary data [J].
Gul Inan ;
Ozlem Ilk .
Statistical Papers, 2019, 60 :601-628
[26]   Many to one comparisons in a longitudinal binary data setup [J].
Nairanjana Dasgupta ;
Limin Yang ;
Brajendra Sutradhar .
Sankhya B, 2012, 74 (2) :268-285
[27]   A weighted combination of pseudo-likelihood estimators for longitudinal binary data subject to non-ignorable non-monotone missingness [J].
Troxel, Andrea B. ;
Lipsitz, Stuart R. ;
Fitzmaurice, Garrett M. ;
Ibrahim, Joseph G. ;
Sinha, Debajyoti ;
Molenberghs, Geert .
STATISTICS IN MEDICINE, 2010, 29 (14) :1511-1521
[28]   Analysis of longitudinal multiple-source binary data using generalized estimating equations [J].
O'Brien, LM ;
Fitzmaurice, GM .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2004, 53 :177-193
[29]   Bayesian approach to average power calculations for binary regression models with misclassified outcomes [J].
Cheng, Dunlei ;
Stamey, James D. ;
Branscum, Adam J. .
STATISTICS IN MEDICINE, 2009, 28 (05) :848-863
[30]   Regression models for the analysis of longitudinal Gaussian data from multiple sources [J].
O'Brien, LM ;
Fitzmaurice, GM .
STATISTICS IN MEDICINE, 2005, 24 (11) :1725-1744