ASYMPTOTIC NORMALITY OF 2 SAMPLE LINEAR RANK STATISTICS UNDER U-STATISTIC STRUCTURE

被引:2
作者
DENKER, M
PURI, ML
机构
[1] UNIV GOTTINGEN,INST MATH STOCHAST,W-3400 GOTTINGEN,GERMANY
[2] INDIANA UNIV,DEPT MATH,BLOOMINGTON,IN 47401
关键词
LINEAR RANK STATISTIC; U-STATISTIC; SCORE FUNCTION; PITMAN EFFICIENCY;
D O I
10.1016/0378-3758(92)90154-K
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove the asymptotic normality of the two sample linear rank statistic when the independent samples arise from U-statistics with kernels of varying degree. The proof uses variance estimates of the empirical process of U-statistic structure and the continuity theorem in Denker and Rosler (1985b). This method also applies to other rank statistics. We give a sharp upper bound for the asymptotic efficacy of these statistics when the kernels are order preserving.
引用
收藏
页码:89 / 110
页数:22
相关论文
共 8 条