The present study tested the hypothesis that the pathway from the medial hypothalamus to the midbrain periaqueductal gray (PAG) subserving defensive rage behavior in the cat facilitates the occurrence of this response when elicited from the PAG by utilizing excitatory amino acids as a neurotransmitter or neuromodulator. Cannula electrodes were implanted into the PAG for the elicitation of defensive rage behavior as well as for microinjections of excitatory amino acid antagonists and N-methyl-D-aspartic acid (NMDA). Monopolar stimulating electrodes were also implanted into the medial hypothalamus from which this response could also be elicited and, when stimulated at sub-threshold levels for elicitation of behavior, could also facilitate the occurrence of PAG elicited defensive rage. Initially, dual stimulation of the PAG and medial hypothalamus facilitated the occurrence of defensive rage elicited from the PAG. Then, the identical dual stimulation paradigm was repeated with the same current parameters following the infusion of various antagonists for different receptors into the PAG defensive rage sites. The results indicate that infusion of either kynurenic acid [(0.1-2.0 nmol), a non-selective excitatory amino acid receptor antagonist] or D-amino-7-phosphonoheptanoic acid (AP7) [(0.1-2.0 nmol), a specific NMDA receptor antagonist], produced a dose and time dependent blockade of the facilitatory effects of medial hypothalamic stimulation. In contrast, microinjections of relatively larger doses of 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) [(4 nmol), a non-NMDA receptor (quisqualate and kainate) antagonist] or atropine [(4.4 nmol), a muscarinic receptor antagonist] had little effect upon medial hypothalamically elicited facilitation of the PAG response. In a second experiment, NMDA [0.1-1.0 nmol] was microinjected directly into PAG defensive rage sites in the absence of medial hypothalamic stimulation. In these animals, drug infusion mimicked the effects of dual stimulation by producing a dose and time dependent decrease in response latencies. A third experiment was designed to further test the hypothesis by neuroanatomical methods. Here, the retrograde label, Fluoro-Gold, was microinjected into defensive rage sites within the PAG and following a survival time of 5-6 days, the animals were sacrificed. The brains were then processed for immunocytochemical analysis of cells that immunoreact positively for aspartate and glutamate. The results indicated the presence of many retrogradely labelled and immunocytochemically positive cells within the rostro-caudal extent of the medial hypothalamus as well as others that were double labelled. The results, overall, provide evidence that the medial hypothalamus facilitates the occurrence of defensive rage behavior from the PAG and that this effect is mediated by a mechanism utilizing excitatory amino acids that act through NMDA receptors.