Positivity Preserving Interpolation of Positive Data by Cubic Trigonometric Spline

被引:0
作者
Abbas, Muhammad [1 ,2 ]
Abd Majid, Ahmad [1 ]
Ali, Jamaludin Md. [1 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, Usm 11800, Penang, Malaysia
[2] Univ Sargodha, Dept Math, Sargodha, Pakistan
关键词
Cubic Trigonometric Spline; Shape Preservation; Interpolation; Positivity; Positive Data; Shape parameters;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For smooth and visualizing pleasant curve, we construct a positivity preserving interpolation by using alternative spline that is, cubic trigonometric spline with two shape parameters. In the description of the cubic trigonometric spline interpolant, positivity is preserved everywhere and has a unique representation for the positivity. We develop a constraints on the shape parameters to preserve the shape of the positive data in the view of smooth and pleasant positive curve by trigonometric interpolant. The degree of smoothness of the under discussion scheme is C-1.
引用
收藏
页码:41 / 50
页数:10
相关论文
共 7 条
  • [1] Farin G., 1993, CURVES SURFACES COMP
  • [2] The cubic trigonometric Bezier curve with two shape parameters
    Han, Xi-An
    Ma, YiChen
    Huang, XiLi
    [J]. APPLIED MATHEMATICS LETTERS, 2009, 22 (02) : 226 - 231
  • [3] Hoschek J., 1993, FUNDAMENTALS COMPUTE
  • [4] Positivity-preserving interpolation of positive data by rational cubics
    Hussain, Malik Zawwar
    Sarfraz, Muhammad
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2008, 218 (02) : 446 - 458
  • [5] Hussain MZ, 2006, MATEMATIKA, V22, P147
  • [6] Positive data modeling using spline function
    Sarfraz, Muhammad
    Hussain, Malik Zawwar
    Nisar, Asfar
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (07) : 2036 - 2049
  • [7] SCHOENBERG IJ, 1964, J MATH MECH, V13, P795