On Extremal Cacti with Respect to the Edge Szeged Index and Edge-vertex Szeged Index

被引:4
作者
He, Shengjie [1 ]
Hao, Rong-Xia [1 ]
Yu, Aimei [1 ]
机构
[1] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国国家自然科学基金;
关键词
edge Szeged index; edge-vertex Szeged index; cactus; MAXIMUM WIENER INDEX; PI INDEXES; GRAPHS; TREES;
D O I
10.2298/FIL1811069H
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The edge Szeged index and edge-vertex Szeged index of a graph are defined as Sz(e)(G) = Sigma(uv is an element of E(G) )m(u) (uv vertical bar G)m(v)(uv vertical bar G) and Sz(ev)(G) = 1/2 Sigma(uv is an element of E(G)) [n(u)(uv vertical bar G)m(v)(uv vertical bar G) + n(v)(uv vertical bar G)m(u)(uv vertical bar G)], respectively, where m(u)(uv vertical bar G) (resp., m(v)(uv vertical bar G)) and n(u) (uv vertical bar G) (resp., n(v)(uv vertical bar G)) are the number of edges and vertices whose distance to vertex u (resp., v) is smaller than the distance to vertex v (resp., u), respectively. A cactus is a graph in which any two cycles have at most one common vertex. In this paper, the lower bounds of edge Szeged index and edge-vertex Szeged index for cacti with order n and k cycles are determined, and all the graphs that achieve the lower bounds are identified.
引用
收藏
页码:4069 / 4078
页数:10
相关论文
共 27 条
[1]  
Al-Fozan T, 2014, MATCH-COMMUN MATH CO, V72, P339
[2]  
Alaeiyan M., 2011, WORLD APPL SCI J, V14, P1254
[3]  
[Anonymous], 1986, REAL COMPLEX ANAL
[4]   On a conjecture about the Szeged index [J].
Aouchiche, M. ;
Hansen, P. .
EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (07) :1662-1666
[5]  
Cai XC, 2010, MATCH-COMMUN MATH CO, V63, P133
[6]   The (revised) Szeged index and the Wiener index of a nonbipartite graph [J].
Chen, Lily ;
Li, Xueliang ;
Liu, Mengmeng .
EUROPEAN JOURNAL OF COMBINATORICS, 2014, 36 :237-246
[7]  
Deng HY, 2007, MATCH-COMMUN MATH CO, V57, P393
[8]  
Dobrynin AA, 1997, CROAT CHEM ACTA, V70, P819
[9]   Wiener index of trees: Theory and applications [J].
Dobrynin, AA ;
Entringer, R ;
Gutman, I .
ACTA APPLICANDAE MATHEMATICAE, 2001, 66 (03) :211-249
[10]  
Dong H, 2012, ARS COMBINATORIA, V103, P407