THE CHOICE OF REDUCING SUBSTRATE IS ALTERED BY REPLACEMENT OF AN ALANINE BY A PROLINE IN THE FAD DOMAIN OF A BISPECIFIC NAD(P)H-NITRATE REDUCTASE FROM BIRCH

被引:17
作者
SCHONDORF, T [1 ]
HACHTEL, W [1 ]
机构
[1] UNIV BONN, INST BOT, D-53115 BONN, GERMANY
关键词
D O I
10.1104/pp.108.1.203
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Differences in the amino acid sequence between the bispecific NAD(P)H-nitrate reductase of birch (Betula pendula Roth) and the monospecific NADH-nitrate reductases of a variety of other higher plants have been found at the dinucleotide-binding site in the FAD domain. To pinpoint amino acid residues that determine the choice of reducing substrate, we introduced mutations into the cDNA coding for birch nitrate reductase. These mutations were aimed at replacing certain amino acids of the NAD(P)H-binding site by conserved amino acids located at identical positions in NADH-monospecific enzymes. The mutated cDNAs were integrated into the genome of tobacco by Agrobacterium-mediated transformation. Transgenic tobacco (Nicotiana tabacum) plants were grown on a medium containing ammonium as the sole nitrogen source to keep endogenous tobacco nitrate reductase activity low. Whereas some of the mutated enzymes showed a slight preference for NADPH, as does the nonmutated birch enzyme, the activity of some others greatly depended on the availability of NADH and was low with NADPH alone. Comparison of the mutations reveals that replacement of a single amino acid in the birch sequence (alanine(871) by proline) is critical for the use of reducing substrate.
引用
收藏
页码:203 / 210
页数:8
相关论文
empty
未找到相关数据