Regularity of the solutions to a nonlinear boundary problem with indefinite weight

被引:6
作者
Anane, Aomar [1 ]
Chakrone, Omar [1 ]
Moradi, Najat [1 ]
机构
[1] Univ Mohammed 1, Fac Sci, Dept Math & Informat, Oujda, Morocco
来源
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA | 2011年 / 29卷 / 01期
关键词
Regularity; p-Laplacian; nonlinear boundary conditions; weight;
D O I
10.5269/bspm.v29i1.11402
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the regularity of the solutions to the problem Delta(p)u = vertical bar u vertical bar(p-2)u in the bounded smooth domain Omega subset of R-N, with vertical bar del u vertical bar(p-2) partial derivative u/partial derivative v = lambda V(x)vertical bar u vertical bar(p-2)u+h as a nonlinear boundary condition where partial derivative Omega is C-2,C-beta with beta is an element of]0, 1[, and V is a weight in L-s(partial derivative Omega) and h is an element of L-s(partial derivative Omega) for some s >= 1. We prove that all solutions are in L-infinity(partial derivative Omega) boolean AND L-infinity(Omega), and using the D.Debenedetto's theorem of regularity in [1] we conclude that those solutions are C-1,C-alpha ((Omega) over bar) in for some alpha is an element of]0, 1[.
引用
收藏
页码:17 / 23
页数:7
相关论文
共 2 条
[1]  
Bonder J. F., 2000, MATH SUBJECT CLASSIF, V35, P30