AN ADAPTIVE HP-FINITE ELEMENT METHOD FOR INCOMPRESSIBLE FREE-SURFACE FLOWS OF GENERALIZED NEWTONIAN FLUIDS

被引:0
作者
LEGAT, V [1 ]
ODEN, JT [1 ]
机构
[1] UNIV CATHOLIQUE LOUVAIN,CESAME,B-1348 LOUVAIN,BELGIUM
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 1995年 / 46卷
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An adaptive hp-finite element method for free surface flows of incompressible viscous fluids is presented. Generalized Newtonian models and surface tension effects are included. Principal components of our method are a reliable discretization of the free surface, a moving grid algorithm, an a posteriori error estimator and an efficient adaptive strategy. A full Newton-Raphson iterative scheme and an adequate data structure are employed in the analysis. Numerical experiments that illustrate applications of the method to model free surface flows are included.
引用
收藏
页码:S643 / S678
页数:36
相关论文
共 26 条
[1]  
AINSWORTH M, 1993, NUM MATH, V54
[2]  
[Anonymous], 1969, MATH THEORY VISCOUS
[3]   THE P-VERSION AND H-P-VERSION OF THE FINITE-ELEMENT METHOD, AN OVERVIEW [J].
BABUSKA, I ;
SURI, M .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1990, 80 (1-3) :5-26
[4]  
BERGHEZAN D, 1994, IN PRESS J COMP PHYS
[5]  
CAREY GF, 1983, FINITE ELEMENTS 2ND
[6]   TOWARD A UNIVERSAL H-P ADAPTIVE FINITE-ELEMENT STRATEGY .1. CONSTRAINED APPROXIMATION AND DATA STRUCTURE [J].
DEMKOWICZ, L ;
ODEN, JT ;
RACHOWICZ, W ;
HARDY, O .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1989, 77 (1-2) :79-112
[7]   FINITE-ELEMENT METHOD FOR TIME-DEPENDENT INCOMPRESSIBLE FREE-SURFACE FLOW [J].
FREDERIKSEN, CS ;
WATTS, AM .
JOURNAL OF COMPUTATIONAL PHYSICS, 1981, 39 (02) :282-304
[8]   SINGULAR FINITE-ELEMENTS FOR THE SUDDEN-EXPANSION AND THE DIE-SWELL PROBLEMS [J].
GEORGIOU, GC ;
SCHULTZ, WW ;
OLSON, LG .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1990, 10 (04) :357-372
[10]   A FINITE-DIFFERENCE TECHNIQUE FOR SOLVING THE NEWTONIAN JET SWELL PROBLEM [J].
HAN, CT ;
TSAI, CC ;
YU, TA ;
LIU, TJ .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 1992, 15 (07) :773-789