ATP-SENSITIVE BINDING OF A 70-KDA CYTOSOLIC PROTEIN TO THE GLUCOSE-TRANSPORTER IN RAT ADIPOCYTES

被引:33
作者
LIU, HZ
XIONG, SH
SHI, YW
SAMUEL, SJ
LACHAAL, M
JUNG, CY
机构
[1] VET ADM MED CTR,BIOPHYS LAB,BUFFALO,NY 14215
[2] SUNY BUFFALO,DEPT BIOPHYS SCI,BUFFALO,NY 14215
关键词
D O I
10.1074/jbc.270.14.7869
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have identified a 70-kDa cytosolic protein (GTBP70) in rat adipocytes that binds to glutathione S-transferase fusion proteins corresponding to the cytoplasmic domains of the facilitative glucose transporter isoforms Glut1, Glut2, and Glut4. GTBP70 did not bind to irrelevant fusion proteins, indicating that the binding is specific to the glucose transporter. GTBP70 binding to the glucose transporter showed little isoform specificity but was significantly subdomain-specific; it bound to the C-terminal domain and the central loop, but not to the N-terminal domain of Glut4. The GTBP70 binding to Glut4 was not affected by the presence of 2 mM EDTA, 2.4 mM Ca2+, or 150 mm K+. The binding was inhibited by ATP in a dose-dependent manner, with 50% inhibition at 10 mM ATP. This inhibition was specific to ATP, as ADP and AMP-PCP (adenosine 5'-(beta,gamma-methylenetriphosphate)) were without effect. GTBP70 did not react with antibodies against phosphotyrosine, phosphothreonine, or phosphoserine, suggesting that it is not a phosphoprotein. The binding of GTBP70 to Glut4 was not affected by the pretreatment of adipocytes with insulin. When these experiments were repeated using rat hepatocyte cytosols, no ATP-sensitive 70-kDa protein binding to the glucose transporter fusion proteins was evident, suggesting that either GTBP70 expression or its function is cell-specific. These findings strongly suggest the possibility that GTBP70 may play a key role in glucose transporter regulation in insulin target cells such as adipocytes.
引用
收藏
页码:7869 / 7875
页数:7
相关论文
共 29 条
[1]  
ASANO T, 1992, J BIOL CHEM, V267, P19636
[2]  
BALDINI G, 1991, J BIOL CHEM, V266, P4037
[3]   MAMMALIAN PASSIVE GLUCOSE TRANSPORTERS - MEMBERS OF AN UBIQUITOUS FAMILY OF ACTIVE AND PASSIVE TRANSPORT PROTEINS [J].
BALDWIN, SA .
BIOCHIMICA ET BIOPHYSICA ACTA, 1993, 1154 (01) :17-49
[4]   MOLECULAR-BIOLOGY OF MAMMALIAN GLUCOSE TRANSPORTERS [J].
BELL, GI ;
KAYANO, T ;
BUSE, JB ;
BURANT, CF ;
TAKEDA, J ;
LIN, D ;
FUKUMOTO, H ;
SEINO, S .
DIABETES CARE, 1990, 13 (03) :198-208
[5]  
BELL GI, 1993, J BIOL CHEM, V268, P1916
[6]   RECYCLING RECEPTORS - THE ROUND-TRIP ITINERARY OF MIGRANT MEMBRANE-PROTEINS [J].
BROWN, MS ;
ANDERSON, RGW ;
GOLDSTEIN, JL .
CELL, 1983, 32 (03) :663-667
[7]   A DOUBLE LEUCINE WITHIN THE GLUT4 GLUCOSE-TRANSPORTER COOH-TERMINAL DOMAIN FUNCTIONS AS AN ENDOCYTOSIS SIGNAL [J].
CORVERA, S ;
CHAWLA, A ;
CHAKRABARTI, R ;
JOLY, M ;
BUXTON, J ;
CZECH, MP .
JOURNAL OF CELL BIOLOGY, 1994, 126 (04) :979-989
[8]   COMPLEX REGULATION OF SIMPLE SUGAR-TRANSPORT IN INSULIN-RESPONSIVE CELLS [J].
CZECH, MP ;
CLANCY, BM ;
PESSINO, A ;
WOON, CW ;
HARRISON, SA .
TRENDS IN BIOCHEMICAL SCIENCES, 1992, 17 (05) :197-201
[9]  
CZECH MP, 1993, J CELL BIOL, V122, P127
[10]  
HOLMAN GD, 1990, J BIOL CHEM, V265, P18172