KERNEL STRUCTURE OF BLOCK HANKEL AND TOEPLITZ MATRICES AND PARTIAL-REALIZATION

被引:28
作者
HEINIG, G [1 ]
JANKOWSKI, P [1 ]
机构
[1] TECH UNIV CHEMNITZ,FACHBEREICH MATH,O-9010 KARL MARX STADT,GERMANY
关键词
D O I
10.1016/0024-3795(92)90299-P
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The kernel structure of block Hankel and Toeplitz matrices is studied. This leads to the concept of a fundamental system, which is basic in the theory and provides, in particular, a natural background for the partial realization problem.
引用
收藏
页码:1 / 30
页数:30
相关论文
共 18 条
[1]  
[Anonymous], 1980, LINEAR SYSTEMS
[2]   ON RECURSIVENESS AND RELATED TOPICS IN LINEAR-SYSTEMS [J].
ANTOULAS, AC .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1986, 31 (12) :1121-1135
[3]  
Bart H., 1979, MINIMAL FACTORIZATIO
[4]   ON PARAMETRIZATIONS FOR THE MINIMAL PARTIAL-REALIZATION PROBLEM [J].
BOSGRA, OH .
SYSTEMS & CONTROL LETTERS, 1983, 3 (04) :181-187
[5]   RECURSIVE RELATIONS FOR BLOCK HANKEL AND TOEPLITZ-SYSTEMS .1. DIRECT RECURSIONS [J].
BULTHEEL, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 10 (03) :301-328
[6]   MINIMAL REALIZATION ALGORITHM FOR MATRIX SEQUENCES [J].
DICKINSON, BW ;
MORF, M ;
KAILATH, T .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (01) :31-38
[7]   ON MINIMALITY IN THE PARTIAL-REALIZATION PROBLEM [J].
GOHBERG, I ;
KAASHOEK, MA ;
LERER, L .
SYSTEMS & CONTROL LETTERS, 1987, 9 (02) :97-104
[8]  
Gohberg I.C., 1974, TRANSLATIONS MATH MO, V41
[9]   ON THE PARTIAL-REALIZATION PROBLEM [J].
GRAGG, WB ;
LINDQUIST, A .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1983, 50 (APR) :277-319
[10]  
HEINIG G, 1990, PROG SYST C, V5, P79