ASYMPTOTIC-BEHAVIOR OF NEYMAN-PEARSON TESTS FOR AUTOREGRESSIVE PROCESSES

被引:0
作者
LUSCHGY, H
机构
关键词
KULLBACK-LEIBLER INFORMATION; NEYMAN-PEARSON TESTS; ADAPTIVE TESTS; RATE OF CONVERGENCE OF ERROR PROBABILITIES; PROCESSES WITH INDEPENDENT STATIONARY INCREMENTS; AUTOREGRESSIVE PROCESSES;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a continuous time autoregressive model, the rate of exponential convergence of the second kind error of Neyman-Pearson tests is derived when the observation time increases to infinity. The assumptions ensure that the Kullback-Leibler information is finite.
引用
收藏
页码:461 / 473
页数:13
相关论文
共 10 条
[1]  
BASAWA IV, 1983, LECTURE NOTES STATIS, V17
[2]  
Jacod J., 2003, LIMIT THEOREMS STOCH
[3]  
Liptser R., 2012, THEORY MARTINGALES, V49
[4]   ADAPTIVE TESTS FOR STOCHASTIC-PROCESSES IN THE ERGODIC CASE [J].
LUSCHGY, H ;
RUKHIN, AL ;
VAJDA, I .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1993, 45 (01) :45-59
[5]   ASYMPTOTIC INFERENCE FOR SEMIMARTINGALE MODELS WITH SINGULAR PARAMETER POINTS [J].
LUSCHGY, H .
JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1994, 39 (02) :155-186
[6]   LOCAL ASYMPTOTIC MIXED NORMALITY FOR SEMIMARTINGALE EXPERIMENTS [J].
LUSCHGY, H .
PROBABILITY THEORY AND RELATED FIELDS, 1992, 92 (02) :151-176
[7]  
LUSCHGY H, 1993, STATIST DECISIONS, V11, P133
[8]  
MORAN PAP, 1987, J APPL PROBAB, V4, P380
[9]   OPERATOR-SELFDECOMPOSABLE DISTRIBUTIONS AS LIMIT DISTRIBUTIONS OF PROCESSES OF ORNSTEIN-UHLENBECK TYPE [J].
SATO, K ;
YAMAZATO, M .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1984, 17 (01) :73-100
[10]  
SORENSEN M, 1991, STAT INFERENCE STOCH, P67