CRITERIA FOR VALIDITY OF THE MAXIMUM MODULUS PRINCIPLE FOR SOLUTIONS OF LINEAR PARABOLIC-SYSTEMS

被引:7
作者
KRESIN, GI [1 ]
MAZYA, VG [1 ]
机构
[1] LINKOPING UNIV,DEPT MATH,S-58183 LINKOPING,SWEDEN
来源
ARKIV FOR MATEMATIK | 1994年 / 32卷 / 01期
关键词
D O I
10.1007/BF02559526
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider systems of partial differential equations of the first order in t and of order 2s in the x variables, which are uniformly parabolic in the sense of Petrovskii. We show that the classical maximum modulus principle is not valid in R(n) x (0, T] for s > 2. For second order systems we obtain necessary and, separately, sufficient conditions for the classical maximum modulus principle to hold in the layer Rn x (0, T] and in the cylinder Q x (0, T], where OMEGA is a bounded subdomain of R(n). If the coefficients of the system do not depend on t, these conditions coincide. The necessary and sufficient condition in this case is that the principal part of the system is scalar and that the coefficients of the system satisfy a certain algebraic inequality. We show by an example that the scalar character of the principal part of the system everywhere in the domain is not necessary for validity of the classical maximum modulus principle when the coefficients depend both on x and t.
引用
收藏
页码:121 / 155
页数:35
相关论文
共 50 条
[1]   MAXIMUM PRINCIPLE FOR SEMI-LINEAR PARABOLIC-SYSTEMS [J].
MARTIN, RH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 74 (01) :66-70
[2]   MAXIMUM PRINCIPLE FOR NON-LINEAR PARABOLIC-SYSTEMS [J].
KILIMANN, N .
MATHEMATISCHE ZEITSCHRIFT, 1980, 171 (03) :227-230
[3]   Criteria for validity of the maximum norm principle for parabolic systems [J].
Kresin, GI ;
Maz'ya, VG .
POTENTIAL ANALYSIS, 1999, 10 (03) :243-272
[4]   Criteria for Validity of the Maximum Norm Principle for Parabolic Systems [J].
Gershon I. Kresin ;
Vladimir G. Maz'ya .
Potential Analysis, 1999, 10 :243-272
[5]   A GENERALIZED MAXIMUM PRINCIPLE FOR SEMILINEAR PARABOLIC-SYSTEMS [J].
CHURBANOV, VV .
VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1990, (06) :81-83
[6]   ESTIMATES OF SOLUTIONS FOR LINEAR PARABOLIC-SYSTEMS OF DIVERGENT TYPE [J].
DANILJUK, GI .
DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1978, (02) :105-109
[7]   THE MAXIMUM PRINCIPLE FOR THE 2ND-ORDER ELLIPTIC AND PARABOLIC-SYSTEMS [J].
KRESIN, GI ;
MAZIA, VG .
DOKLADY AKADEMII NAUK SSSR, 1983, 273 (01) :38-41
[8]   SMOOTHNESS OF SOLUTIONS OF PARABOLIC-SYSTEMS [J].
KOSHELEV, AI ;
CHISTYAKOV, VM .
IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII MATEMATIKA, 1989, (11) :46-50
[9]   REGULARITY OF SOLUTIONS FOR SOME QUASI-LINEAR PARABOLIC-SYSTEMS [J].
KOSHELEV, A .
MATHEMATISCHE NACHRICHTEN, 1993, 162 :59-88
[10]   STABILITY OF STATIONARY SOLUTIONS OF NON-LINEAR PARABOLIC-SYSTEMS [J].
BELONOSOV, VS ;
VISNEVSKII, MP .
MATHEMATICS OF THE USSR-SBORNIK, 1977, 33 (04) :465-484