SUPPRESSION OF CHAOS BY RESONANT PARAMETRIC PERTURBATIONS

被引:424
作者
LIMA, R
PETTINI, M
机构
[1] Centre de Physique Théorique, Luminy, F-13288 Marseille CEDEX 09
来源
PHYSICAL REVIEW A | 1990年 / 41卷 / 02期
关键词
D O I
10.1103/PhysRevA.41.726
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Starting from a chaotic regime in the dynamics of a Duffing-Holmes oscillator, we show how it is possible, by means of a small parametric perturbation of suitable frequency, to bring the system to a regular regime. This situation is studied from the analytic point of view using the Melnikov method and from the numerical point of view computing Lyapunov exponents. The corresponding bounds for the perturbation are compared. Noting that the time, measured along the original unperturbed separatrix, that elapses between two successive homoclinic intersections grows when we approach the resonance, we propose a possible scenario for this type of regularization of the dynamics. © 1990 The American Physical Society.
引用
收藏
页码:726 / 733
页数:8
相关论文
共 16 条
  • [1] ABRAHAM R, 1978, F MECHANICS
  • [2] GENERALIZED MULTISTABILITY AND NOISE-INDUCED JUMPS IN A NONLINEAR DYNAMICAL SYSTEM
    ARECCHI, FT
    BADII, R
    POLITI, A
    [J]. PHYSICAL REVIEW A, 1985, 32 (01): : 402 - 408
  • [3] Arnold V.I., 1976, METHODES MATH MECANI
  • [4] Arnold V.I., 1968, ERGODIC PROBLEMS CLA
  • [5] ARNOLD VI, 1980, CHAPITRES SUPPLEMENT, pCH3
  • [6] KOLMOGOROV ENTROPY AND NUMERICAL EXPERIMENTS
    BENETTIN, G
    GALGANI, L
    STRELCYN, JM
    [J]. PHYSICAL REVIEW A, 1976, 14 (06): : 2338 - 2345
  • [7] UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS
    CHIRIKOV, BV
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05): : 263 - 379
  • [8] DAVIS H. T., 1962, INTRO NONLINEAR DIFF
  • [9] GERASIMOV A, 1986, LECTURE NOTES PHYSIC, V247
  • [10] Guckenheimer J., 2013, APPL MATH SCI, DOI 10.1007/978-1-4612- 1140-2