DOMAIN DECOMPOSITION METHOD TO REALIZE AN IMPLICIT DIFFERENCE SCHEME FOR THE ONE-PHASE STEFAN PROBLEM

被引:0
|
作者
KUZNETSOV, YA
LAPIN, AV
机构
来源
SOVIET JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING | 1988年 / 3卷 / 06期
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:487 / 504
页数:18
相关论文
共 50 条
  • [41] ESTIMATION OF THE CONDUCTIVITY IN THE ONE-PHASE STEFAN PROBLEM - NUMERICAL RESULTS
    KUNISCH, K
    MURPHY, KA
    PEICHL, G
    RAIRO-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1993, 27 (05): : 613 - 650
  • [42] Identification of a boundary influx condition in a one-phase Stefan problem
    Ghanmi, Chifaa
    Mani Aouadi, Saloua
    Triki, Faouzi
    APPLICABLE ANALYSIS, 2022, 101 (18) : 6573 - 6595
  • [43] ESTIMATION OF THE CONDUCTIVITY IN THE ONE-PHASE STEFAN PROBLEM - BASIC RESULTS
    KUNISCH, K
    MURPHY, KA
    PEICHL, G
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 1995, 9B (01): : 77 - 103
  • [44] Simulation of the one-phase Stefan problem in a layer of a semitransparent medium
    N. A. Rubtsov
    N. A. Savvinova
    S. D. Sleptsov
    Journal of Engineering Thermophysics, 2015, 24 : 123 - 138
  • [45] Spreadsheet simulation of the moving boundary of the one-phase Stefan problem
    Kharab, A
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1997, 145 (3-4) : 217 - 225
  • [46] ONE-PHASE SPHERICAL STEFAN PROBLEM WITH TEMPERATURE DEPENDENT COEFFICIENTS
    Kharin, S. N.
    Nauryz, T. A.
    EURASIAN MATHEMATICAL JOURNAL, 2021, 12 (01): : 49 - 56
  • [47] One-phase inverse stefan problem with an unknown distributed convection coefficient
    N. L. Gol’dman
    Doklady Mathematics, 2014, 90 : 576 - 580
  • [48] A new application of He's variational iteration method for the solution of the one-phase Stefan problem
    Slota, Damian
    Zielonka, Adam
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (11-12) : 2489 - 2494
  • [49] OPTIMAL-CONTROL FOR ONE-PHASE STEFAN PROBLEM WITH RANDOM EMISSION
    AIHARA, SI
    ISHIKAWA, M
    APPLIED MATHEMATICS AND OPTIMIZATION, 1989, 20 (03): : 261 - 295
  • [50] The Ginzburg-Landau equations of superconductivity and the one-phase Stefan problem
    Dept. of Mathematics and Statistics, McMaster University, Hamilton, Ont. L8S 4K1, Canada
    不详
    Anna Inst Henri Poincare Annal Anal Non Lineaire, 3 (371-397):