CHARACTERIZATION OF n-VERTEX GRAPHS WITH METRIC DIMENSION n - 3

被引:0
作者
Jannesari, Mohsen [1 ]
Omoomi, Behnaz [1 ]
机构
[1] Isfahan Univ Technol, Dept Math, Esfahan 8415683111, Iran
来源
MATHEMATICA BOHEMICA | 2014年 / 139卷 / 01期
关键词
resolving set; basis; metric dimension;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For an ordered set W = {w(1)(,) w(2),, w(k)} of vertices and a vertex v in a connected graph G, the ordered k-vector r(v vertical bar W) := (d(v, w(1)), d(v, w(2)),...,d(v,w(k))) is called the metric representation of v with respect to W, where d(x,y) is the distance between vertices x and y. A set W is called a resolving set for G if distinct vertices of G have distinct representations with respect to W. The minimum cardinality of a resolving set for G is its metric dimension. In this paper, we characterize all graphs of order n with metric dimension n 3.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 12 条
[1]  
Caceres J., 2005, ELECT NOTES DISC MAT, V22, P129, DOI [10.1016/j.endm.2005.06.023, DOI 10.1016/J.ENDM.2005.06.023]
[2]   On the metric dimension of cartesian products of graphs [J].
Caceres, Jose ;
Hernando, Carmen ;
Mora, Merce ;
Pelayo, Ignacio M. ;
Puertas, Maria L. ;
Seara, Carlos ;
Wood, David R. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (02) :423-441
[3]   Resolvability in graphs and the metric dimension of a graph [J].
Chartrand, G ;
Eroh, L ;
Johnson, MA ;
Oellermann, OR .
DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) :99-113
[4]   Resolvability and the upper dimension of graphs [J].
Chartrand, G ;
Poisson, C ;
Zhang, P .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (12) :19-28
[5]  
Chartrand G., 2003, CONGR NUMER CONF J N, P47
[6]  
Harary F., 1976, ARS COMBINATORIA, V2, P191
[7]  
Hernando C, 2010, ELECTRON J COMB, V17
[8]   Landmarks in graphs [J].
Khuller, S ;
Raghavachari, B ;
Rosenfeld, A .
DISCRETE APPLIED MATHEMATICS, 1996, 70 (03) :217-229
[9]   On metric generators of graphs [J].
Sebó, A ;
Tannier, E .
MATHEMATICS OF OPERATIONS RESEARCH, 2004, 29 (02) :383-393
[10]  
Slater P., 1975, C NUMER, VVolume 14, P549