THE HEAT-EQUATION AND HARMONIC MAPS OF COMPLETE MANIFOLDS

被引:136
作者
LI, P
TAM, LF
机构
[1] Department of Mathematics, University of California, Irvine, 92717, CA
关键词
D O I
10.1007/BF01232256
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:1 / 46
页数:46
相关论文
共 30 条
[1]  
AKUTAGAWA K, HARMONIC DIFFEOMORPH
[2]  
AVILES P, BOUNDARY BEHAVIOR HA
[3]  
Cheeger J, 1971, J DIFFERENTIAL GEOME, V6, P119
[4]  
CHEN Y, EXISTENCE PARTIAL RE
[5]   NEW EXAMPLES OF HARMONIC DIFFEOMORPHISMS OF THE HYPERBOLIC PLANE ONTO ITSELF [J].
CHOI, HI ;
TREIBERGS, A .
MANUSCRIPTA MATHEMATICA, 1988, 62 (02) :249-256
[6]  
CHOI HI, IN PRESS J DIFF GEOM
[7]   HEAT-EQUATION AND COMPACTIFICATIONS OF COMPLETE RIEMANNIAN-MANIFOLDS [J].
DONNELLY, H ;
LI, P .
DUKE MATHEMATICAL JOURNAL, 1984, 51 (03) :667-673
[8]   ANOTHER REPORT ON HARMONIC MAPS [J].
EELLS, J ;
LEMAIRE, L .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1988, 20 :385-524
[9]  
Eells J., 1978, B LOND MATH SOC, V10, P1, DOI DOI 10.1112/BLMS/10.1.1
[10]  
Hamilton R. S., 1975, LECT NOTES MATH, V471