Order bounded local derivations on Archimedean almost f-algebras

被引:0
作者
Toumi, Mohamed Ali [1 ]
机构
[1] Fac Sci be Bizerte, Dept Math, 7021 Zarzouna, Bizerte, Tunisia
关键词
Almost f-algebr; Derivation; Local derivation;
D O I
10.1007/s12215-009-0028-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an Archimedean almost integral-algebra and let d : A A be an order bounded local derivation. Then d is a generalized averaging operator on A, i.e., d (xd (y)) z = d (x) d (y)z for all x, y, z is an element of A. In the case where A is an Archimedeanf-algebra, the situation improves. Indeed, any order bounded local derivation on A is an averaging operator, i.e., d (xd (y)) = d (x) d (y) for all x, y is an element of A.
引用
收藏
页码:337 / 344
页数:8
相关论文
共 11 条
[1]  
Aliprantis C., 1985, POSITIVE OPERATORS
[2]   ALMOST F-ALGEBRAS AND D-ALGEBRAS [J].
BERNAU, SJ ;
HUIJSMANS, CB .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1990, 107 :287-308
[3]  
Birkhoff G., 1956, AN ACAD BRAS CIENC, V28, P41
[4]  
Birkhoff G., 1967, LATTICE THEORY AM M, V25
[5]   Almost f-algebras:: Commutativity and the Cauchy-Schwarz inequality [J].
Buskes, G ;
van Rooij, A .
POSITIVITY, 2000, 4 (03) :227-231
[6]  
Buskes Gerard, 2007, [Владикавказский математический журнал, Vladikavkazskii matematicheskii zhurnal], V9, P16
[7]  
DEPAGTER B, 1981, THESIS
[8]   A RADICAL FOR LATTICE-ORDERED RINGS [J].
DIEM, JE .
PACIFIC JOURNAL OF MATHEMATICS, 1968, 25 (01) :71-&
[9]   LOCAL DERIVATIONS [J].
KADISON, RV .
JOURNAL OF ALGEBRA, 1990, 130 (02) :494-509
[10]  
LUXEMBURG WAJ, 1971, RIESZ SPACES I