EXACT MEAN-FIELD HAMILTONIAN FOR FERMIONIC LATTICE MODELS IN HIGH DIMENSIONS

被引:103
作者
VANDONGEN, PGJ
VOLLHARDT, D
机构
[1] Institut F̈r Theoretische Physik C, Technische Hochschule Aachen
关键词
D O I
10.1103/PhysRevLett.65.1663
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show that even for fermionic lattice models with on-site interaction a mean-field Hamiltonian can be constructed, whiche in analogy with spin-lattice modelse becomes exact in the limit of high spatial dimensions d. Here the mean fields are fermion operators, rather than numbers. We use this method to obtain the exact solution of a simplified Hubbard model on a Bethe lattice for all temperatures. The order parameter is found to have the conventional mean-field form, but exhibits unusually rich behavior as a function of the interaction. © 1990 The American Physical Society.
引用
收藏
页码:1663 / 1666
页数:4
相关论文
共 27 条
[1]  
[Anonymous], 1979, GREENS FUNCTIONS QUA
[2]   GROUND-STATE PROPERTIES OF A SPINLESS FALICOV-KIMBALL MODEL - ADDITIONAL FEATURES [J].
BRANDT, U ;
SCHMIDT, R .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1987, 67 (01) :43-51
[3]   THERMODYNAMICS AND CORRELATION-FUNCTIONS OF THE FALICOV-KIMBALL MODEL IN LARGE DIMENSIONS [J].
BRANDT, U ;
MIELSCH, C .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1989, 75 (03) :365-370
[4]   THERMODYNAMICS OF THE FALICOV-KIMBALL MODEL IN LARGE DIMENSIONS .2. CRITICAL-TEMPERATURE AND ORDER PARAMETER [J].
BRANDT, U ;
MIELSCH, C .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1990, 79 (02) :295-299
[5]   EXACT RESULTS FOR THE DISTRIBUTION OF THE F-LEVEL GROUND-STATE OCCUPATION IN THE SPINLESS FALICOV-KIMBALL MODEL [J].
BRANDT, U ;
SCHMIDT, R .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1986, 63 (01) :45-53
[6]   STATISTICAL MECHANICAL THEORY OF FERROMAGNETISM - HIGH DENSITY BEHAVIOR [J].
BROUT, R .
PHYSICAL REVIEW, 1960, 118 (04) :1009-1019
[7]   SIMPLE MODEL FOR SEMICONDUCTOR-METAL TRANSITIONS - SMB6 AND TRANSITION-METAL OXIDES [J].
FALICOV, LM ;
KIMBALL, JC .
PHYSICAL REVIEW LETTERS, 1969, 22 (19) :997-&
[8]  
GUTZWILLER C, 1965, PHYS REV, V137, pA1726
[9]  
Gutzwiller M C, 1963, PHYS REV LETT, V10, P59