SOLUTION OF OPTIMAL-CONTROL PROBLEMS BY A POINTWISE PROJECTED NEWTON METHOD

被引:21
作者
KELLEY, CT [1 ]
SACHS, EW [1 ]
机构
[1] UNIV TRIER,FB MATH 4,D-54286 TRIER,GERMANY
关键词
PROJECTED NEWTON ITERATION; OPTIMAL CONTROL;
D O I
10.1137/S0363012993249900
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In the context of optimal control of ordinary differential equations, we prove local superlinear convergence and constraint identification results for an extension of the projected Newton method of Bertsekas. The estimates are also valid for discretized versions of the method-problem pair.
引用
收藏
页码:1731 / 1757
页数:27
相关论文
共 16 条
[1]   GOLDSTEIN-LEVITIN-POLYAK GRADIENT PROJECTION METHOD [J].
BERTSEKAS, DP .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1976, 21 (02) :174-183
[3]  
Daniel J. W., 1971, APPROXIMATE MINIMIZA
[4]  
DMYANOV VF, 1970, APPROXIMATE METHODS
[5]   VARIANTS OF THE KUHN TUCKER SUFFICIENT CONDITIONS IN CONES OF NONNEGATIVE FUNCTIONS [J].
DUNN, JC ;
TIAN, T .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1992, 30 (06) :1361-1384
[9]   CONVEX PROGRAMMING IN HILBERT SPACE [J].
GOLDSTEIN, AA .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1964, 70 (05) :709-&
[10]   A POINTWISE QUASI-NEWTON METHOD FOR UNCONSTRAINED OPTIMAL-CONTROL PROBLEMS [J].
KELLEY, CT ;
SACHS, EW .
NUMERISCHE MATHEMATIK, 1989, 55 (02) :159-176