STEINER TRIPLE-SYSTEMS OF ORDER-19 WITH NONTRIVIAL AUTOMORPHISM GROUP

被引:11
作者
COLBOURN, CJ [1 ]
MAGLIVERAS, SS [1 ]
STINSON, DR [1 ]
机构
[1] UNIV NEBRASKA,DEPT COMP SCI & ENGN,LINCOLN,NE 68588
关键词
D O I
10.2307/2152997
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There are 172,248 Steiner triple systems of order 19 having a nontrivial automorphism group. Computational methods suitable for generating these designs are developed. The use of tactical configurations in conjunction with orderly algorithms underlies practical techniques for the generation of the designs, and the subexponential time isomorphism technique for triple systems is improved in practice to test isomorphisms of the designs. The automorphism group of each of the triple systems is computed, and a summary presented of the number of systems with each possible type of automorphism.
引用
收藏
页码:283 / &
相关论文
共 22 条
[1]  
Bays S., 1932, COMMENT MATH HELV, V4, P183
[2]   CATALOGING THE GRAPHS ON 10 VERTICES [J].
CAMERON, RD ;
COLBOURN, CJ ;
READ, RC ;
WORMALD, NC .
JOURNAL OF GRAPH THEORY, 1985, 9 (04) :551-562
[3]  
Colbourn C. J., 1980, ARS COMBINATORIA, V9, P191
[4]   ORDERLY ALGORITHMS FOR GRAPH GENERATION [J].
COLBOURN, CJ ;
READ, RC .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1979, 7 (03) :167-172
[5]  
COLBOURN CJ, 1992, MATH COMPUT, V58, P441
[6]  
COLBOURN CJ, UNPUB PARALLELIZATIO
[7]  
COLBOURN CJ, 1987, ACTA U CAR, V28, P41
[8]  
DENNISTON RHF, 1980, ANN DISCRETE MATH, V7, P255
[9]  
GEWLLING EN, 1974, C NUMER, V9, P213
[10]  
Mathon R., 1977, ARS COMBINATORIA, V4, P309