UNIDIRECTIONAL FREEZING OF BINARY AQUEOUS-SOLUTIONS - AN ANALYSIS OF TRANSIENT DIFFUSION OF HEAT AND MASS

被引:38
作者
WOLLHOVER, K
KORBER, C
SCHEIWE, MW
HARTMANN, U
机构
[1] RWTH, Inst fuer Biomedizinische, Technik, Aachen, West Ger, RWTH, Inst fuer Biomedizinische Technik, Aachen, West Ger
关键词
LIQUIDS; -; Freezing;
D O I
10.1016/0017-9310(85)90226-1
中图分类号
O414.1 [热力学];
学科分类号
摘要
A model is presented describing the transient freezing of a binary aqueous solution in a region of finite extent. The model consists of three partial differential equations that are coupled by common non-linear boundary conditions in analogy to similar 'moving boundary' problems. The essential assumptions are as follows: constant cooling rates imposed at the boundaries of the system, transport of heat and mass by diffusion only, macroscopically planar phase boundary, total rejection of solute at the phase boundary and local thermodynamic equilibrium at the phase boundary.
引用
收藏
页码:761 / 769
页数:9
相关论文
共 51 条
[1]  
BANKOFF SG, 1964, ADV CHEM ENG, V5
[3]  
BOLEY BA, 1978, APPLIED OVERVIEW MOV
[4]  
Bonnerot R., 1974, International Journal for Numerical Methods in Engineering, V8, P811, DOI 10.1002/nme.1620080410
[5]  
BREITMAR J, 1982, THESIS RWTH AACHEN
[6]   NUMERIC CALCULATION AND SIMULATION OF NONSTEADY MASS-TRANSFER BY MOVING PHASE-BOUNDARIES IN BINARY-ALLOYS [J].
BUNG, R ;
TENSI, HM .
WARME UND STOFFUBERTRAGUNG-THERMO AND FLUID DYNAMICS, 1976, 9 (03) :203-213
[7]  
CARSLAW GS, 1973, CONDUCTION HEAT SOLI
[8]   USE OF GREENS FUNCTIONS FOR SOLVING MELTING OR SOLIDIFICATION PROBLEMS [J].
CHUANG, YK ;
SZEKELY, J .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1971, 14 (09) :1285-&
[9]  
DANS J, 1976, TASCHENBUCH CHEM PHY
[10]   THEORY OF STABILITY OF SOLID-LIQUID INTERFACE UNDER CONSTITUTIONAL SUPERCOOLING (1) [J].
DELVES, RT .
PHYSICA STATUS SOLIDI, 1966, 16 (02) :621-&