Molecular Dynamics Modeling of Thermal Conductivity of Silicon/Germanium Nanowires

被引:0
作者
Kishkar, A. S. [1 ]
Kuryliuk, V. V. [1 ]
机构
[1] Taras Shevchenko Natl Univ Kyiv, Dept Phys, Volodymyrska Str 64-13, UA-01601 Kiev, Ukraine
来源
PHYSICS AND CHEMISTRY OF SOLID STATE | 2018年 / 19卷 / 03期
关键词
thermal conductivity; nanowire; silicon; germanium; molecular dynamics;
D O I
10.15330/pcss.19.3.222-225
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The thermal conductivity of silicon/germanium nanowires with different geometry and composition has been studied by using the nonequilibrium molecular dynamics method. The thermal conductivity of the Si1-xGex nanowires is shown to firstly decrease, reaches a minimum at x = 0.4 and then to increase, as the germanium content x grows. It was found that in the tubular Si nanowires the thermal conductivity decreases monotonously with increasing radius of the cylindrical void. The phonon spectra were calculated and the mechanisms of phonon scattering in the investigated nanowires were analyzed.
引用
收藏
页码:222 / 225
页数:4
相关论文
共 50 条
[21]   Molecular dynamics simulation of thermal conductivity of silicon thin film [J].
Wang, Haitao ;
Xu, Yibin ;
Shimono, Masato ;
Tanaka, Yoshihisa ;
Yamazaki, Masayoshi .
MATERIALS TRANSACTIONS, 2007, 48 (09) :2419-2421
[22]   Thermal conductivity of silicon, germanium and silicon-germanium single crystals between 85 K and 300 K [J].
Freund, AK ;
Gillet, JA ;
Zhang, L .
CRYSTAL AND MULTILAYER OPTICS, 1998, 3448 :362-372
[23]   Molecular Dynamics Modeling of the Radial Heat Transfer from Silicon Nanowires [J].
Bejenari, Igor ;
Burenkov, Alexander ;
Pichler, Peter ;
Deretzis, Ioannis ;
La Magna, Antonin .
2020 INTERNATIONAL CONFERENCE ON SIMULATION OF SEMICONDUCTOR PROCESSES AND DEVICES (SISPAD 2020), 2020, :67-70
[24]   Effects of quantum statistics of phonons on the thermal conductivity of silicon and germanium nanoribbons [J].
Kosevich, Yuriy A. ;
Savin, Alexander V. ;
Cantarero, Andres .
NANOSCALE RESEARCH LETTERS, 2013, 8 :1-4
[25]   Tailoring thermal conductivity of silicon/germanium nanowires utilizing core-shell architecture [J].
Sarikurt, S. ;
Ozden, A. ;
Kandemir, A. ;
Sevik, C. ;
Kinaci, A. ;
Haskins, J. B. ;
Cagin, T. .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (15)
[26]   Reference Correlations for the Thermal Conductivity of Liquid Bismuth, Cobalt, Germanium, and Silicon [J].
Assael, M. J. ;
Antoniadis, K. D. ;
Wakeham, W. A. ;
Huber, M. L. ;
Fukuyama, H. .
JOURNAL OF PHYSICAL AND CHEMICAL REFERENCE DATA, 2017, 46 (03)
[27]   Effects of quantum statistics of phonons on the thermal conductivity of silicon and germanium nanoribbons [J].
Yuriy A Kosevich ;
Alexander V Savin ;
Andrés Cantarero .
Nanoscale Research Letters, 8
[28]   Effect of Temperature on Thermal Conductivity of Silicon Germanium Square Nanowire using Nonequilibrium Molecular Dynamics Simulation [J].
Jadhav, Priyanka P. ;
Dongale, T. D. ;
Vhatkar, R. S. .
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS (ICAM 2019), 2019, 2162
[29]   Investigation of plasticity in silicon nanowires by molecular dynamics simulations [J].
Guenole, J. ;
Godet, J. ;
Brochard, S. .
MATERIALS STRUCTURE & MICROMECHANICS OF FRACTURE, 2011, 465 :89-92
[30]   Molecular dynamics simulation of thermal conductivity of nanoscale thin silicon films [J].
Feng, XL ;
Li, ZX ;
Guo, ZY .
MICROSCALE THERMOPHYSICAL ENGINEERING, 2003, 7 (02) :153-161