ON A 3RD-ORDER NONLINEAR BOUNDARY-VALUE PROBLEM AT RESONANCE

被引:22
作者
NAGLE, RK
POTHOVEN, KL
机构
[1] Department of Mathematics, University of South Florida, Tampa, FL
关键词
D O I
10.1006/jmaa.1995.1348
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we discuss the existence of solutions to third order boundary value problems of the form x''' + x' + g(x, x') = p(t), x'(0) = x'(pi) = x(eta) = 0, where eta lies in [0, pi]. We assume that g is continuous and one-sided bounded (e.g., g greater than or equal to 0) and p is continuous. Solutions are shown to exist if p satisfies a Landesman-Lazer type condition involving g. Several examples are given to illustrate how these conditions depend upon the parameter eta. (C) 1995 Academic Press, Inc.
引用
收藏
页码:148 / 159
页数:12
相关论文
共 13 条
[1]   EXISTENCE AND UNIQUENESS THEOREMS FOR 3-POINT BOUNDARY-VALUE PROBLEMS [J].
AFTABIZADEH, AR ;
GUPTA, CP ;
XU, JM .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1989, 20 (03) :716-726
[2]  
AFTABIZADEH AR, 1986, REND SEM MAT U PADOV, V75, P130
[3]   EXISTENCE-UNIQUENESS AND ITERATIVE METHODS FOR 3RD-ORDER BOUNDARY-VALUE-PROBLEMS [J].
AGARWAL, RP .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 17 (03) :271-289
[4]  
CESARI L, 1976, NONLINEAR FUNCTIONAL
[5]  
GREGUS M, 1987, 3RD ORDER LINEAR DIF
[6]  
Gupta C.P., 1989, DIFFER INTEGRAL EQU, V2, P1
[8]   EXISTENCE OF SOLUTIONS OF X''+X+G(X)=P(T),X(0)=0=X(PI) [J].
KANNAN, R ;
ORTEGA, R .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1986, 96 (01) :67-70
[9]   SANDWICH BEAM ANALYSIS [J].
KRAJCINOVIC, D .
JOURNAL OF APPLIED MECHANICS, 1972, 39 (03) :773-+
[10]  
Mawhin J. L., 1979, CBMS REGIONAL C SER, V40