FIBROBLAST GROWTH-FACTOR RECEPTOR-4 SHOWS NOVEL FEATURES IN GENOMIC STRUCTURE, LIGAND-BINDING AND SIGNAL TRANSDUCTION

被引:163
作者
VAINIKKA, S
PARTANEN, J
BELLOSTA, P
COULIER, F
BASILICO, C
JAYE, M
ALITALO, K
机构
[1] UNIV HELSINKI, DEPT PATHOL, CANC BIOL LAB, HAARTMANIK 3, SF-00290 HELSINKI 29, FINLAND
[2] UNIV HELSINKI, DEPT VIROL, SF-00290 HELSINKI 29, FINLAND
[3] UNIV HELSINKI, TRANSPLANTAT LAB, SF-00290 HELSINKI 29, FINLAND
[4] NYU MED CTR, NEW YORK, NY 10016 USA
[5] INSERM, UNITE 119, F-13009 MARSEILLE, FRANCE
[6] RHONE POULENC CENT RES, COLLEGEVILLE, PA 19426 USA
关键词
ALTERNATIVE SPLICING; FIBROBLAST GROWTH FACTOR; FGF RECEPTOR; SIGNAL TRANSDUCTION;
D O I
10.1002/j.1460-2075.1992.tb05526.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Fibroblast growth factor (FGF) receptor (FGFR) gene family consists of at least four receptor tyrosine kinases that transduce signals important in a variety of developmental and physiological processes related to cell growth and differentiation. Here we have characterized the binding of different FGFs to FGFR-4. Our results establish an FGF binding profile for FGFR-4 with aFGF having the highest affinity, followed by K-FGF/hst-1 and bFGF. In addition, FGF-6 was found to bind to FGFR-4 in ligand competition experiments. Interestingly, the FGFR-4 gene was found to encode only the prototype receptor in a region where both FGFR-1 and FGFR-2 show alternative splicing leading to differences in their ligand binding specificities and to secreted forms of these receptors. Ligands binding to FGFR-4 induced receptor autophosphorylation and phosphorylation of a set of cellular polypeptides, which differed from those phosphorylated in FGFR-1-expressing cells. Specifically, the FGFR-1-expressing cells showed a considerably more extensive tyrosine phosphorylation of PLC-gamma than the FGFR-4-expressing cells. Structural and functional specificity within the FGFR family exemplified by FGFR-4 may help to explain how FGFs perform their diverse functions.
引用
收藏
页码:4273 / 4280
页数:8
相关论文
共 47 条
[1]   NUCLEOTIDE-SEQUENCE OF A BOVINE CLONE ENCODING THE ANGIOGENIC PROTEIN, BASIC FIBROBLAST GROWTH-FACTOR [J].
ABRAHAM, JA ;
MERGIA, A ;
WHANG, JL ;
TUMOLO, A ;
FRIEDMAN, J ;
HJERRILD, KA ;
GOSPODAROWICZ, D ;
FIDDES, JC .
SCIENCE, 1986, 233 (4763) :545-548
[2]   LIGAND-INDUCED TRANSPHOSPHORYLATION BETWEEN DIFFERENT FGF RECEPTORS [J].
BELLOT, F ;
CRUMLEY, G ;
KAPLOW, JM ;
SCHLESSINGER, J ;
JAYE, M ;
DIONNE, CA .
EMBO JOURNAL, 1991, 10 (10) :2849-2854
[3]   AN ONCOGENE ISOLATED BY TRANSFECTION OF KAPOSIS-SARCOMA DNA ENCODES A GROWTH-FACTOR THAT IS A MEMBER OF THE FGF FAMILY [J].
BOVI, PD ;
CURATOLA, AM ;
KERN, FG ;
GRECO, A ;
ITTMANN, M ;
BASILICO, C .
CELL, 1987, 50 (05) :729-737
[4]   CHARACTERIZATION AND CDNA CLONING OF PHOSPHOLIPASE-C-GAMMA, A MAJOR SUBSTRATE FOR HEPARIN-BINDING GROWTH FACTOR-I (ACIDIC FIBROBLAST GROWTH FACTOR)-ACTIVATED TYROSINE KINASE [J].
BURGESS, WH ;
DIONNE, CA ;
KAPLOW, J ;
MUDD, R ;
FRIESEL, R ;
ZILBERSTEIN, A ;
SCHLESSINGER, J ;
JAYE, M .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (09) :4770-4777
[5]   THE HEPARIN-BINDING (FIBROBLAST) GROWTH-FACTOR FAMILY OF PROTEINS [J].
BURGESS, WH ;
MACIAG, T .
ANNUAL REVIEW OF BIOCHEMISTRY, 1989, 58 :575-606
[6]   ONCOGENES AND SIGNAL TRANSDUCTION [J].
CANTLEY, LC ;
AUGER, KR ;
CARPENTER, C ;
DUCKWORTH, B ;
GRAZIANI, A ;
KAPELLER, R ;
SOLTOFF, S .
CELL, 1991, 64 (02) :281-302
[7]   POTENTIAL ONCOGENE PRODUCT RELATED TO GROWTH-FACTORS [J].
DICKSON, C ;
PETERS, G .
NATURE, 1987, 326 (6116) :833-833
[8]   CLONING AND EXPRESSION OF 2 DISTINCT HIGH-AFFINITY RECEPTORS CROSS-REACTING WITH ACIDIC AND BASIC FIBROBLAST GROWTH-FACTORS [J].
DIONNE, CA ;
CRUMLEY, G ;
BELLOT, F ;
KAPLOW, JM ;
SEARFOSS, G ;
RUTA, M ;
BURGESS, WH ;
JAYE, M ;
SCHLESSINGER, J .
EMBO JOURNAL, 1990, 9 (09) :2685-2692
[9]   HUMAN KGF IS FGF-RELATED WITH PROPERTIES OF A PARACRINE EFFECTOR OF EPITHELIAL-CELL GROWTH [J].
FINCH, PW ;
RUBIN, JS ;
MIKI, T ;
RON, D ;
AARONSON, SA .
SCIENCE, 1989, 245 (4919) :752-755
[10]   ANGIOGENIC FACTORS [J].
FOLKMAN, J ;
KLAGSBRUN, M .
SCIENCE, 1987, 235 (4787) :442-447