THE ALGEBRAIC STRUCTURE OF LINEARLY RECURSIVE SEQUENCES UNDER HADAMARD PRODUCT

被引:15
作者
LARSON, RG [1 ]
TAFT, EJ [1 ]
机构
[1] RUTGERS STATE UNIV,DEPT MATH,NEW BRUNSWICK,NJ 08903
关键词
D O I
10.1007/BF02764615
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We describe the algebraic structure of linearly recursive sequences under the Hadamard (point-wise) product. We characterize the invertible elements and the zero divisors. Our methods use the Hopf-algebraic structure of this algebra and classical results on Hopf algebras. We show that our criterion for invertibility is effective if one knows a linearly recursive relation for a sequence and certain information about finitely-generated subgroups of the multiplicitive group of the field.
引用
收藏
页码:118 / 132
页数:15
相关论文
共 9 条
[1]  
Atiyah M. F., 1969, INTRO COMMUTATIVE AL
[2]  
BENZAGHOU B, 1970, B SOC MATH FR, V98, P209
[3]  
Curtis C.W., 1962, REPRESENTATION THEOR
[4]  
PASSMAN DS, 1971, INFINITE GROUP RINGS
[5]  
PETERSON B, 1980, EQUATIONES MATH, V20, P1
[6]  
REUTENAUER C, 1982, B SOC MATH FR, V110, P225
[7]  
Ronse C., 1984, FEEDBACK SHIFT REGIS
[8]  
Sweedler ME., 1969, HOPF ALGEBRAS
[9]  
VANDERPOORTEN J, 1989, NUMBER THEORY APPLIC