An electrochemical model for an upflow dual-chambered microbial fuel cell (MFC) process is proposed in this study. The model was set up on the basis of the experimental results and the analysis of biochemical and electrochemical processes in the MFC biocatalysed with anaerobic aged sludge and alternatively fuelled with a synthetic acetate-based and actual domestic wastewaters. Simulation of the process shows that the model describes the process reasonably well with correlation coefficients higher than 0.97. The analysis of model simulation illustrates how the current output depends mainly on the substrate concentration as well as other main variables. The relationship between the current output and over-voltage is revealed by the modelling study. For acetate-based wastewaters with initial chemical oxygen demand (COD) concentrations of 350, 700, 1050, and 1400 mg/L, maximum observed power densities were 290, 405, 448, and 525 mW/m(2) associated with maximum COD removals of 84%, 88%, 83%, and 82%, respectively.