SOLUTION OF DIRICHLET PROBLEM FOR ELLIPTIC EQUATIONS IN DOMAINS WITH PIECEWISE-SMOOTH BOUNDARY

被引:0
作者
GRINTSEVICHYUS, RK [1 ]
机构
[1] MV LOMONOSOV STATE UNIV,MOSCOW,USSR
来源
DOKLADY AKADEMII NAUK SSSR | 1975年 / 221卷 / 02期
关键词
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:272 / 274
页数:3
相关论文
共 50 条
[31]   Averaging methods for piecewise-smooth ordinary differential equations [J].
Feckan, Michal ;
Pacuta, Julius ;
Pospisil, Michal ;
Vidlicka, Pavol .
AIMS MATHEMATICS, 2019, 4 (05) :1466-1487
[32]   The third boundary value problem in potential theory for domains with a piecewise smooth boundary [J].
Medkova, D .
CZECHOSLOVAK MATHEMATICAL JOURNAL, 1997, 47 (04) :651-679
[33]   The third boundary value problem in potential theory for domains with a piecewise smooth boundary [J].
Dagmar Medková .
Czechoslovak Mathematical Journal, 1997, 47 :651-679
[34]   JUMP OF THE MARTINELLI BOCHNER INTEGRAL FOR DOMAINS WITH PIECEWISE-SMOOTH BOUNDARIES [J].
PRENOV, BB ;
TARKHANOV, NN .
SIBERIAN MATHEMATICAL JOURNAL, 1989, 30 (01) :153-155
[35]   Spectral asymptotics of variational problems with elliptic constraints in domains with piecewise smooth boundary [J].
Suslina, TA .
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 1999, 6 (02) :214-234
[36]   BEHAVIOR OF SOLUTIONS TO DIRICHLET PROBLEM FOR NONLINEAR ELLIPTIC EQUATIONS IN UNBOUNDED DOMAINS [J].
SULEIMANOV, NM .
DOKLADY AKADEMII NAUK SSSR, 1978, 239 (04) :797-799
[37]   Dirichlet Problem for Elliptic Equations in Weighted Sobolev Spaces on Unbounded Domains [J].
Monsurro, Sara ;
Transirico, Maria .
AZERBAIJAN JOURNAL OF MATHEMATICS, 2014, 4 (01) :79-91
[39]   EXISTENCE AND UNIQUE OF SOLUTION TO EXTERNAL DIRICHLET PROBLEM FOR ELLIPTIC EQUATIONS [J].
MATARASS.S .
ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI RENDICONTI-CLASSE DI SCIENZE FISICHE-MATEMATICHE & NATURALI, 1972, 52 (02) :132-&
[40]   Dynamic Bending of Plastic Polymetallic Plates with Piecewise-Smooth Elliptic Contours [J].
Nemirovskii Y.V. .
Journal of Mathematical Sciences, 2021, 258 (4) :568-575