QUANTUM GROUP SYMMETRIES IN 2-DIMENSIONAL LATTICE QUANTUM-FIELD THEORY

被引:25
作者
BERNARD, D [1 ]
FELDER, G [1 ]
机构
[1] SWISS FED INST TECHNOL,INST THEORET PHYS,CH-8093 ZURICH,SWITZERLAND
基金
美国国家科学基金会;
关键词
D O I
10.1016/0550-3213(91)90608-Z
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We present a general theory of non-local conserved currents in two-dimensional quantum field theory in the lattice approximation. They reflect quantum group symmetries. Various examples are studied.
引用
收藏
页码:98 / 120
页数:23
相关论文
共 50 条
[41]   THE POSTULATES OF QUANTUM-FIELD THEORY [J].
GULMANELLI, P .
SCIENTIA, 1965, 100 (9-10) :190-198
[42]   QUATERNIONIC QUANTUM-FIELD THEORY [J].
ADLER, SL .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 104 (04) :611-656
[43]   QUANTUM-FIELD THEORY OF ANYONS [J].
FROHLICH, J ;
MARCHETTI, PA .
LETTERS IN MATHEMATICAL PHYSICS, 1988, 16 (04) :347-358
[44]   INTERPRETATIONS OF QUANTUM-FIELD THEORY [J].
HUGGETT, N ;
WEINGARD, R .
PHILOSOPHY OF SCIENCE, 1994, 61 (03) :370-388
[45]   WHAT IS A QUANTUM-FIELD THEORY [J].
BRYDGES, DC .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 8 (01) :31-40
[46]   QUANTUM-FIELD THEORY AND SUPERCOMPUTERS [J].
MORIARTY, KJM ;
REBBI, C .
COMPUTER PHYSICS COMMUNICATIONS, 1986, 40 (2-3) :181-188
[47]   ON MULTILOCAL QUANTUM-FIELD THEORY [J].
DROZVINCENT, P .
LETTERE AL NUOVO CIMENTO, 1980, 28 (05) :166-168
[48]   QUANTUM-FIELD THEORY OF THE UNIVERSE [J].
HOSOYA, A ;
MORIKAWA, M .
PHYSICAL REVIEW D, 1989, 39 (04) :1123-1129
[49]   QUATERNIONIC QUANTUM-FIELD THEORY [J].
ADLER, SL .
PHYSICAL REVIEW LETTERS, 1985, 55 (08) :783-786
[50]   INFRARED AND VACUUM-STRUCTURE IN 2-DIMENSIONAL MODELS OF LOCAL QUANTUM-FIELD THEORY .2. FERMION BOSONIZATION [J].
MORCHIO, G ;
PIEROTTI, D ;
STROCCHI, F .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (02) :777-790