On the Diophantine Equation x(2)

被引:0
作者
Yow, K. S. [1 ]
Sapar, S. H. [1 ]
Atan, K. A. [1 ]
机构
[1] Univ Putra Malaysia, Inst Math Res, Serdang 43400, Selangor, Malaysia
来源
PERTANIKA JOURNAL OF SCIENCE AND TECHNOLOGY | 2013年 / 21卷 / 02期
关键词
Diophantine equation; generator; geometric progression;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper investigates and determines the solutions for the Diophantine equation x(2) + 4 center dot 7(b )= y(2r), where x,y, b are all positive intergers and r > 1. By substituting the values of r and b respectively, generators of x and y can be determined and classified into different categories. Then, by using geometric progression method, a general formula for each category can be obtained. The necessary conditions to obtain the integral solutions of x and y are also investigated.
引用
收藏
页码:443 / 457
页数:15
相关论文
共 12 条
[1]  
Abu Muriefah FS, 1998, B AUST MATH SOC, V57, P189
[2]  
Arif S.A., 1998, INT J MATH MATH SCI, V21, P610
[3]   THE DIOPHANTINE EQUATION X(2)+C=Y(N) [J].
COHN, JHE .
ACTA ARITHMETICA, 1993, 65 (04) :367-381
[4]  
KO C, 1965, SCI SINICA, V14, P457
[5]  
Le MH, 1997, CHINESE SCI BULL, V42, P1515
[6]  
Lebesgue V. A., 1850, NOUVELLA ANN MATHEME, V78, P26
[7]  
Ljunggren W., 1943, ARK MAT ASTR FYS A, V29A
[8]   On a diophantine equation [J].
Luca, F .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2000, 61 (02) :241-246
[9]  
Luca F, 2002, INT J MATH MATH SCI, V29, P239
[10]   ON THE DIOPHANTINE EQUATION x2+2a . 5b = yn [J].
Luca, Florian ;
Togbe, Alain .
INTERNATIONAL JOURNAL OF NUMBER THEORY, 2008, 4 (06) :973-979