Nested multigrid methods for time-periodic, parabolic optimal control problems

被引:21
作者
Abbeloos, Dirk [1 ]
Diehl, Moritz [2 ]
Hinze, Michael [3 ]
Vandewalle, Stefan [1 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, Celestijnenlaan 200, B-3001 Heverlee, Belgium
[2] Katholieke Univ Leuven, ESAT, Dept Elect Engn, B-3001 Heverlee, Belgium
[3] Univ Hamburg, Fachbereich Math, D-20146 Hamburg, Germany
关键词
D O I
10.1007/s00791-011-0158-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a nested multigrid method to optimize time-periodic, parabolic, partial differential equations (PDE). We consider a quadratic tracking objective with a linear parabolic PDE constraint. The first order optimality conditions, given by a coupled system of boundary value problems can be rewritten as an Fredholm integral equation of the second kind, which is solved by a multigrid of the second kind. The evaluation of the integral operator consists of solving sequentially a boundary value problem for respectively the state and the adjoints. Both problems are solved efficiently by a time-periodic space-time multigrid method.
引用
收藏
页码:27 / 38
页数:12
相关论文
共 19 条
[1]   Efficient numerical solution of parabolic optimization problems by finite element methods [J].
Becker, Roland ;
Meidner, Dominik ;
Vexler, Boris .
OPTIMIZATION METHODS & SOFTWARE, 2007, 22 (05) :813-833
[2]   Multigrid methods for parabolic distributed optimal control problems [J].
Borzì, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2003, 157 (02) :365-382
[3]   Multigrid Methods for PDE Optimization [J].
Borzi, Alfio ;
Schulz, Volker .
SIAM REVIEW, 2009, 51 (02) :361-395
[4]   FAST NUMERICAL-SOLUTION OF TIME-PERIODIC PARABOLIC PROBLEMS BY A MULTIGRID METHOD [J].
HACKBUSCH, W .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1981, 2 (02) :198-206
[5]   FAST SOLVING OF PARABOLIC BOUNDARY CONTROL PROBLEMS [J].
HACKBUSCH, W .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1979, 17 (02) :231-244
[6]  
HEMKER PW, 1981, MATH COMPUT, V36, P215, DOI 10.1090/S0025-5718-1981-0595054-2
[7]  
Hinze M, 2009, MATH MODEL-THEOR APP, V23, P157, DOI 10.1007/978-1-4020-8839-1_3
[8]   A SPACE-TIME MULTIGRID METHOD FOR PARABOLIC PARTIAL-DIFFERENTIAL EQUATIONS [J].
HORTON, G ;
VANDEWALLE, S .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1995, 16 (04) :848-864
[9]   Approximate Robust Optimization of Time-Periodic Stationary States with Application to Biochemical Processes [J].
Houska, Boris ;
Logist, Filip ;
Van Impe, Jan ;
Diehl, Moritz .
PROCEEDINGS OF THE 48TH IEEE CONFERENCE ON DECISION AND CONTROL, 2009 HELD JOINTLY WITH THE 2009 28TH CHINESE CONTROL CONFERENCE (CDC/CCC 2009), 2009, :6280-6285
[10]  
Houska B, 2010, IEEE INTL CONF CONTR, P2172, DOI 10.1109/CCA.2010.5611288